Please use this identifier to cite or link to this item:
標題: 矽氫結構控制與雜質污染對氫化非晶矽薄膜太陽電池特性之影響
The Influence of Controlling Silicon-Hydrogen Bonding and Impurities Contamination on the Characteristics of a-Si:H Thin-Film Solar Cells
作者: 郭泰照
Tai-Chao Kuo
關鍵字: hydrogenated amorphous silicon thin-film solar cells;pulse-wave modulation plasma technique;Si-H bonding;interface buffer layer;residual impurities;氫化非晶矽薄膜太陽電池;脈波調變電漿技術;矽氫鍵結;介面緩衝層;雜質污染
引用: 1. M. A. Green, K. Emery, Y. Hishikawa, W. Warta and E. D. Dunlop, Prog, 'Solar cell efficiency table (version 43),' Prog. Photovolttaics Res. Appl., vol. 22, pp. 1-9, 2014. 2. H. F. Sterling and R. C. G. Swann, 'Chemical vapour deposition promoted by r.f. discharge,' Solid-State Electron., vol. 8, pp. 653-654, 1965. 3. W. E. Spear and P. G. Le Comber, 'Substitutional doping of amorphous silicon,' Solid State Commun., vol.17, pp. 1193-1196, 1975. 4. D. E. Carlson and C. R. Wronski, 'Amorphous silicon solar cell,' Appl. Phys. Lett., vol. 28, pp. 671-673, 1976. 5. B. Yan, G. Yue, Y. Yan, C. S. Jiang, C. W. Teplin, J. Yang and S. Guha, 'Correlation of hydrogen dilution profiling to material structure and device performance of hydrogenated nanocrystalline silicon solar cells,' Mater. Res. Soc. Symp. Proc., vol. 1066, pp. 61-66, 2008. 6. 江雨龍,'太陽電池: 第六章 氫化非晶矽太陽電池,'五南圖書出版公司, pp. 239-240, 2008. 7. P. R. i Cabarrocas, A. F. i Morral, S. Lebib and Y. Poissant, 'Plasma production of nanocrystalline silicon particles and polymorphous silicon thin films for large-area electronic devices,'Pure Appl. Chem., vol. 74, no. 3, pp. 359-367, 2002. 8. K. Zellama, L. Chahed, P. Sl?dek, M. L. Th?ye, J. H. von Bardeleben and P. R. i Cabarrocas, 'Hydrogen-effusion-induced structural changes and defects in a-Si:H films: dependence upon the film microstructure,' Phys. Rev. B, vol. 53, pp. 3804-3812, 1996. 9. L.S. Sidhu and S. Zukotynski, 'Monohydeide clustering in the amorphous silicon matrix,' J. Non-Cryst. Solids, vol. 246, pp. 65-72, 1999. 10. R.W. Collins, A. S. Ferlauto, G. M. Ferreira, C. Chen, J. Koh, R. J. Koval, Y. Lee, J. M. Pearce and C. R. Wronski, 'Evolution of microstructure and phase in amorphous, protocrystalline, and micor crystalline silicon studied by real time spectroscopic ellipsometry,' Sol. Energy Mater. Sol. Cells, vol. 78, pp. 143-180, 2003. 11. A. Shah, E. Vallat-Sauvain, P. Torres, J. Meier, U. Kroll, C. Hof, C. Droz, M. Goerlitzer, N. Wyrsch and M. Vanecek, 'Intrinsic microcrystalline silicon (?c-Si:H) deposited by VHF-GD (very high frequency-glow discharge): a new material for photovoltaics and opoelectronics,' Mater. Sci. Eng. B, vol. 69-70, pp. 219-226, 2000. 12. J. C. Lee, G. W. Kang, S. K. Kim, K. H. Yoon, J. Song and I J. Park, 'The effect of SiH4 flow and H2 dilution on hot-wier ?c-Si:H and a-Si:H films,' Photovoltaic Specialists Conference, 2000. Conference Record of the Twenty-Eighth IEEE, pp. 896-899, 2000. 13. P. Joshi, S. Steen, K. Sivakumar, W. K. Yang, S. Rossnagel, S. Mittal, M. Steiner, D. Neumayer, Y. H. Kim, D. Nagalingam, L. Meng, C. S. Bhatia and J. C. H. Phang, 'Devlopment, characterization and interface engineering of films for enhanced amorphous silicon solar cell performance,' 35th Photovoltaic Specialists Conference (PVSC) IEEE, pp. 003686-003691, 2010. 14. A. F. i Morral, P. R. i Cabarrocas and C. Clerc, 'Structure and hydrogen content of polymorphous silicon thin films studied by spectroscopic ellipsometry and nuclear measurements,' Phys. Rev. B, vol. 69, pp. 125307-1-125307-10, 2004. 15. Y. Hishikawa, S. Tsuda, K. Wakisaka and Y. Kuwano, 'Principles for controlling the optical and electrical properties of hydrogenated amorphous silicon deposited from a silane plasma,' J. Appl. Phys., vol. 73, pp. 4227-4231, 1993. 16. R. E. I. Schropp and M. Zeman, 'Amorphous and Microcrystalline Silicon Solar Cells: Modeling, Materials and Device Technology,' Kluwer Academic publishers, Boston, pp. 45-47, 1998. 17. A. Morimoto, M. Matsumoto, M. Yoshita, M. Kumeda and T. Shimizu, 'Doping effect of oxygen or nitrogen impurity in hydrogenated amorphous silicon films,' Appl. Phys. Lett., vol. 59, pp. 2130-2132, 1991. 18. T. Shimizu, M. Matsumoto, M. Yoshita, M. Iwami, A. Morinoto and M. Kumeda, 'Influence of N, O and C impurities in a-Si:H,' J. Non-Cryst. Solids, vol. 137-138, pp. 391-394, 1991. 19. Y. Hishikawa, M. Isomura, S. Okamoto, H. Hashimoto and S. Tsuda, 'Effects of i-layer properties and impurity on the performance of a-Si solar cells,' Sol. Energy Mater. Sol. Cells, vol. 34, pp. 303-312, 1994. 20. M. Isomura, T. Kinoshita, Y. Hishikawa and S. Tsuda, 'Influence of oxygen impurity in the intrinsic layer of amorphous silicon solar cells,' Appl. Phys. Lett., vol. 65, no. 18, pp. 2329-2331, 1994. 21. T. Kinoshita, M. Isomura, Y. Hishikawa and S. Tsuda, 'Influence of oxygen and nitrogen in the intrinsic layer of a-Si:H solar cells,' J. J. Appl. Phys., vol. 35, pp. 3819-3824, 1996. 22. J. Woerdenweber, T. Merdzhanova, R. Schmitz, A. M?ck, U. Zastrow, L. Niessen, G. Gordijn, R. Carius, W. Beyer, H. Stiebig and U. Rau, 'Influence of base pressure and atmospheric contaminants on a-Si:H solar cell properties,' J. Appl. Phys., vol. 104, pp. 094507-1-094507-6, 2008. 23. J. Woerdenweber, T. Merdzhanova, H. Stiebig, W. Beyer and A. Gordijn, 'Critical oxygen concentration in hydrogenated amorphous silicon solat cells dependent on the contamination source,' Appl. Phys. Lett., vol. 96, pp. 103505-1-103505-3, 2010. 24. J. Woerdenweber, T. Merdzhanova, A. Gordijn, H. Stiebig and W. Beyer, 'Incorporation and critical concentration of oxygen in a-S:H solar cells,' Sol. Energy Mater. Sol. Cells, vol. 95, pp. 2811-2815, 2011. 25. T. Merdzhanova, J. Woerdenweber, W. Beyer, T. Kilper, U. Zastrow, M. Meier, H. Stiebig and A. Gordijn, 'Impurities in thin-film silicon: Influence on material properties and solar cell performance,' J. Non-Cryst. Solids, vol. 358, pp. 2171-2178, 2012. 26. D. Lundszien, Y. Feng, and F. Finger, 'The influence of the optical band gap of buffer layers at the p/i – and i/n-side on the performance of amorphous silicon germanium solar cells,' Photovoltaic Specialists Conference, 2002. Conference Record of the Twenty-Ninth IEEE, pp. 1218 -1221, 2002. 27. Z. Yu, I. Pereyra and M. N. P. Carreno, 'Wide optical band gap window layers for solar cells,'Sol. Energy Mater. Sol. Cells, vol. 66, pp. 155-162, 2001. 28. S. Y. Myong, S. S. Kim and K. S. Lim, 'Improvement of pin-type amorphous silicon solar cell performance by employing double silicon-carbide p-layer structure,'J. Appl. Phys., vol. 95, pp. 1525-1530, 2004. 29. S. Y. Myong and K. S. Lim, 'Natural hydrogen treatment effect during formation of double amorphous silicon-carbide p layer structures producing high-efficiency pin-type amorphous silicon solar cells,'Appl. Phys. Lett., vol. 86, pp. 033506-1-033506-3, 2005. 30. S. Y. Myong, K. S. Lim and J. M. Pears, 'Double amorphous silicon-carbide p-layer structures producing highly stabilized pin-type protocrystalline silicon multilayer solar cells,'Appl. Phys. Lett., vol. 87, pp. 193509-1-193509-3, 2005. 31. S. Y. Myong, S. W. Kwon, K. S. Lim and M. Konagai, 'Highly stabilized protocrystalline silicon multilayer solar cell using a silicon-carbide double p-layer structure,'Sol. Energy Mater. Sol. Cells, vol. 85, pp. 133-140, 2005. 32. S. Taira, M. Shima, K. Murata and M. Tanaka, 'A role of a-Si:H buffer layer for controlling the impurity profiles near p/i interface of microcrystalline silicon solar cell,'3rd World Conference on Photovoltaic Energy Conversion, Osaka, Japan, 5P-D4-25, 2003. 33. S.Honda, T. Yamazaki, M. Tsurukawa, H. Takakura and Y. Hamakawa, 'Wide band gap buffer effect for amorphous silicon slar cell analyzed by basrea measurement,'3rd World Conference on Photovoltaic Energy Conversion, Osaka, Japan, 5P-D4-01, 2003. 34. L. Raniero, I. Ferreira, H. ?guas, S. Zhang, E. Fortunato and R. Martins, 'Study of a-Si:H buffer layer on nc-Si:/a-Si:H solar cells deposited by PECVD technique,'Photovoltaic Specialists Conference, 2005. Conference Record of the Thirty-first IEEE, pp. 1548-1551, 2005. 35. J. Merten, C. Voz, A. Mu?oz, J. M. Asensi and J. Andreu, 'The role of the buffer layer in the kight of a new equivalent circuit for amorphous silicon solar cells,'Sol. Energy Mater. Sol. Cells, vol. 57, pp. 153-165, 1999. 36. H. Kirimura, H. Maeda, H. Murakami, T. Nakahigashi, S. Ohtani, T. Tabata, T. Hayashi, M. Kobayashi, Y. Mitsuda, N. Nakamura, H. Kuwahara and A. Doi, 'Study of deposition process in modulated rf silane plasma,'Jpn. J. Appl. Phys., vol. 33, pp. 4389-4394, 1994. 37. A. Ahnood, Y. Suzuki, A. Madan and A. Nathan, 'Pulsed-radio frequency plasma enhanced chemical vapour deposition of low temperature silicon nitride for thin film transistors,'Thin Solid Films, vol. 520, pp. 4831-4834, 2012. 38. Y. Watanabe, M. Shiratani, Y. Kubo, I. Ogawa and S. Ogi, 'Effect of low-frequency modulation on rf discharge chemical vapor deposition,'Appl. Phys. Lett., vol. 53, pp. 1263-1265, 1988. 39. A. Madan and S. Morrison, 'High deposition rate amorphous and polycrystalline silicon materials using the pulsed plasma and'Hot-Wire: CVD techniques,'Sol. Energy Mater. Sol. Cells, vol. 55, pp. 127-139, 1998. 40. A. Madan, S. Morrison and H. Kuwahara, 'Progress in high deposition rate amorphous and polycrystalline silicon materials using the pulsed plasma and hot wire CVD deposition techniques,'Sol. Energy Mater. Sol. Cells, vol. 59, pp. 51-58, 1999. 41. S. Morrison and A. Madan, 'Deposition of amorphous silicon solar cells via the pulsed PEVCD technique,'Photovoltaic Specialists Conference, Conference Record of the Twenty-Eighth IEEE, pp. 928 -931, 2000. 42. U. K. Das, S. Morrison and A. Madan, 'Deposition of microcrystalline silicon solar cells via the pulsed PECVD technique,' J. Non-Cryst. Solids, vol. 299-302, pp. 79-82, 2002. 43. S. Morrison, U. K. Das and A. Madan, 'Deposition of microcrystalline silicon films and solar cells via the pulsed PECVD technique,' Photovoltaic Specialists Conference, Conference Record of the Twenty-Ninth IEEE, pp. 1102-1105, 2002 44. U. K. Das, E. Centurioni, S. Morrison, D. L. Williamson and A. Madan, 'Modified pilsed PECVD technique for nano-crystalline silicon solar cells: an effect of i-layer growth temperature,'3rd World Conference on Photovoltaic Energy Conversion, Osaka, Japan, 5P-D4-16, 2003. 45. U. Das, E. Centurioni and A. Madan, 'Thin film silicon materials and solar cells grown by pulsed PECVD technique,'IEE Proc.-Circuits Devices Syst., vol. 150, no. 4, pp. 282-203, 2003. 46. Y. L. Jiang, P. T. Shih and T. C. Kuo, 'Hydrogenated amorphous silicon a-Si:Hx/a-Si:Hy compositional superlattices: profiling the lattice-constant-scale spatial change of the designed Si-H bonding configurations,' Appl. Phys. Lett., vol. 92, pp. 101915-1-101915-3, 2008. 47. M. H. Brodsky, M. Cardona and J. J. Cuomo, 'Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering,'Phys. Rev. B, vol. 16, pp. 3556-3571, 1977. 48. G. E. Jellison and F. A. Modine, 'Parameterization of the optical functions of amorphous materials in the interband region,'Appl. Phys. Lett., vol. 69, pp. 371-1-371-3, 1996. 49. S. Guha, J. Yang, Scott J. Jones, Yan Chen, and D. L. Williamson, 'Effect of microvoids on initial and light-degraded efficiencies of hydrogenated amorphous silicon alloy solar cells,'Appl. Phys. Lett., vol. 61, no. 12, pp. 1444-1446, 1992.
The important factors to obtain high quality hydrogenated amorphous silicon (a-Si:H) thin films and solar cells are controlling of Si-H bonding, Si-H composition ratio, lower impurity doping and modify the characteristics between the interfaces.

In this thesis, the Si-H bonding and Si-H composition ratio of a-Si:H thin films were controlled by single-chamber plasma enhanced chemical vapor deposition with pulse-wave modulation plasma technique. The Si-H bonding and Si-H composition ratio of a-Si:H thin films were altered to investigate their influence on the performance of a-Si:H thin films and a-Si:H thin-film solar cells. The influence of p/i interface, i-layer bulk region and i/n interface with different Si-H bonding and Si-H composition ratio on the a-Si:H thin-film solar cells performance were presented and discussed. The effect of real residual impurities in the process chamber and outgassing from chamber wall after loading sample in atmosphere on the performance of solar cells was investigated.

The results showed that in pulse-wave modulation plasma techniques, modulation plasma turn-on time (ton) could effectively control the Si-H bonds and the Si-H composition ratio of a-Si:H thin films. With ton increases, single silicon-hydrogen (SiH) bonds were reduced, while the double silicon-hydrogen (SiH2) bonds or its clusters ((SiH2)n) were increased, which resulted in the increasing of the hydrogen content and structural defects. The optical energy gap was increased, but refractive index and the real and imaginary part of dielectric constant peak intensity were decreased. The increasing of SiH2 or (SiH2)n bonds leaded to increase of open-circuit voltage (Voc), but drop of short-circuit current density (Jsc) and fill factor (FF) of a-Si:H solar cells. The conversion efficiency (?) and spectral response were decreased. For the a-Si:H solar cell with i-layer deposited at low ton time had the high single SiH bonds which could obtain better performance of Jsc, Voc, FF and ?.

The results of changing Si-H bonds at p/i and i/n interfaces in a i-layer of a-Si:H p-i-n solar cells showed that inserted a buffer i-layer of high SiH2 bonds into the high SiH bonds i-layer effectively increased the built-in potential (Vbi), Voc and ?. The inserted buffer layer at p/i interface played the key role for the change of the performance of solar cell. Inserting a buffer i-layer with high SiH bonds at p/i interface into the high SiH2 bonds i-layer reduced the Voc, FF and ?. The results might be attributed to more carriers recombination at the quantum well produced at p/i interface. For the more SiH bonds i bulk layer with inserting high SiH2 bonds buffer i-layer at p/i and i/n interfaces could obtain a better solar cell performance.

For the influence of residual impurities in a single-chamber PECVD system on the performance of a-Si:H p-i-n solar cells, the results demonstrated high levels of oxygen impurities were significantly doped into a-Si:H solar cells by residual H2O. The residual N2 and O2 only contributed the basic nitrogen and oxygen contamination levels. The oxygen atoms strongly affected the solar cell quality. High concentrations of oxygen atoms and non-uniform doping from the p/i to the i/n interface effectively reduced the FF and ?, and increased the series resistance of the cell. To obtain high performance a-Si:H solar cells, the residual water vapor should be carefully maintained at a considerably low level.



研究結果顯示,以脈波調變電漿技術,固定電漿關閉(toff)時間並調變電漿開啟(ton)時間,可以有效地控制a-Si:H薄膜的矽氫鍵結及組成比例。隨著ton時間增加,a-Si:H薄膜內的單氫鍵結減少,而雙氫鍵結增加。使得a-Si:H薄膜內的氫含量及微結構參數上升,折射率、介電係數實與虛部的峰值強度下降及光能隙上升。製作成a-Si:H薄膜太陽電池,則使得短路電流密度與填充因子下降及開路電壓提升,但光電轉換效率及光譜響應下降。以較低的ton所製作的a-Si:H薄膜,可以得到較多單氫鍵結及較佳的薄膜品質,採用其做為p-i-n a-Si:H薄膜太陽電池的i層,可得到較佳的太陽電池光電轉換特性。


其他識別: U0005-2811201416181341
Rights: 不同意授權瀏覽/列印電子全文服務
Appears in Collections:電機工程學系所

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-103-8095064303-1.pdf2.12 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.