Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91187
標題: 以無內插磁振張量影像進行神經纖維束分段評估皮質脊髓神經束:帕金森氏症患者, 原發性顫動症患者及正常人之比較
Non-Interpolated Tract-Based Statistic Analysis for Estimating The Corticospinal Tract: A Comparison with Parkinson's Disease, Essential Tremor and The Normal Control
作者: 陳君明
Chun-Ming Chen
關鍵字: diffusion tensor imaging (DTI);tractography-based statistic;Parkinson's disease (PD);essential tremor (ET);corticospinal tract (CST);磁振張量影像;神經纖維束;帕金森氏症;原發性顫動症;皮質脊髓神經束
引用: 1. Basser PJ: Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. NMR in biomedicine 1995, 8(7-8):333-344. 2. Hellwig B, Haussler S, Schelter B, Lauk M, Guschlbauer B, Timmer J, Lucking CH: Tremor-correlated cortical activity in essential tremor. Lancet 2001, 357(9255):519-523. 3. Pascual-Leone A, Valls-Sole J, Toro C, Wassermann EM, Hallett M: Resetting of essential tremor and postural tremor in Parkinson's disease with transcranial magnetic stimulation. Muscle & nerve 1994, 17(7):800-807. 4. Nicoletti G, Manners D, Novellino F, Condino F, Malucelli E, Barbiroli B, Tonon C, Arabia G, Salsone M, Giofre L et al: Diffusion tensor MRI changes in cerebellar structures of patients with familial essential tremor. Neurology 2010, 74(12):988-994. 5. Mori S, Oishi K, Jiang H, Jiang L, Li X, Akhter K, Hua K, Faria AV, Mahmood A, Woods R et al: Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template. NeuroImage 2008, 40(2):570-582. 6. Oishi K, Zilles K, Amunts K, Faria A, Jiang H, Li X, Akhter K, Hua K, Woods R, Toga AW et al: Human brain white matter atlas: identification and assignment of common anatomical structures in superficial white matter. NeuroImage 2008, 43(3):447-457. 7. Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, Watkins KE, Ciccarelli O, Cader MZ, Matthews PM et al: Tract-Based Spatial Statistics: Voxelwise Analysis of Multi-Subject Diffusion Data. In: The 14th Annual Meeting of ISMRM. Seattle; 2006: 443. 8. Johansen-Berg H, Behrens TE: Just pretty pictures? What diffusion tractography can add in clinical neuroscience. Current opinion in neurology 2006, 19(4):379-385. 9. Mukherjee P, McKinstry RC: Diffusion tensor imaging and tractography of human brain development. Neuroimaging clinics of North America 2006, 16(1):19-43, vii. 10. Clark CA, Werring DJ: Diffusion tensor imaging in spinal cord: methods and applications - a review. NMR in biomedicine 2002, 15(7-8):578-586. 11. Kabakci N, Gurses B, Firat Z, Bayram A, Ulug AM, Kovanlikaya A, Kovanlikaya I: Diffusion tensor imaging and tractography of median nerve: normative diffusion values. AJR American journal of roentgenology 2007, 189(4):923-927. 12. Manenti G, Carlani M, Mancino S, Colangelo V, Di Roma M, Squillaci E, Simonetti G: Diffusion tensor magnetic resonance imaging of prostate cancer. Investigative radiology 2007, 42(6):412-419. 13. Hashemi RH, William G. Bradley J, Lisanti CJ: MRI The Basics, 2nd edn: Lippincott Williams & Wilkins 2003. 14. Turkbey B, Aras O, Karabulut N, Turgut AT, Akpinar E, Alibek S, Pang Y, Erturk SM, El Khouli RH, Bluemke DA et al: Diffusion-weighted MRI for detecting and monitoring cancer: a review of current applications in body imaging. Diagnostic and interventional radiology 2012, 18(1):46-59. 15. Le Bihan D, Mangin JF, Poupon C, Clark CA, Pappata S, Molko N, Chabriat H: Diffusion tensor imaging: concepts and applications. Journal of magnetic resonance imaging : JMRI 2001, 13(4):534-546. 16. Le Bihan D, Breton E: Imagerie de diffusion in vivo par resonance magnetique nucleaire. CR Acad Sci Paris 1985, 301:1109-1112. 17. Merboldt KD, Hanicke W, Frahm J: Diffusion imaging using stimulated echoes. J Magn Reson 1985, 64:479-486. 18. Taylor DG, Bushell MC: The spatial mapping of translational diffusion coefficients by the NMR imaging technique. Phys Med Biol 1985, 30:345-349. 19. Stejskal EO, Tanner JE: Spin Diffusion Measurements: Spin Echoes in the Presence of a Time-Dependent Field Gradient. The Journal of Chemical Physics 1965, 42:288-292. 20. Markisz JA: Technical Magnetic Resonance Imaging: Appeton & Lange; 1996. 21. A.Brown M, Semelka RC: MRI: Basic Principles and Applications, 3rd edn: Wiley-Liss; 2003. 22. Basser PJ, Mattiello J, LeBihan D: MR diffusion tensor spectroscopy and imaging. Biophysical journal 1994, 66(1):259-267. 23. Pierpaoli C, Jezzard P, Basser PJ, Barnett A, Di Chiro G: Diffusion tensor MR imaging of the human brain. Radiology 1996, 201(3):637-648. 24. Wiegell MR, Larsson HB, Wedeen VJ: Fiber crossing in human brain depicted with diffusion tensor MR imaging. Radiology 2000, 217(3):897-903. 25. Mori S: Introduction to Diffusion Tensor Imaging: Elsevier; 2007. 26. Alexander AL, Lee JE, Lazar M, Field AS: Diffusion tensor imaging of the brain. Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics 2007, 4(3):316-329. 27. Koay CG, Chang LC, Carew JD, Pierpaoli C, Basser PJ: A unifying theoretical and algorithmic framework for least squares methods of estimation in diffusion tensor imaging. Journal of magnetic resonance 2006, 182(1):115-125. 28. Alexander AL, Hasan K, Kindlmann G, Parker DL, Tsuruda JS: A geometric analysis of diffusion tensor measurements of the human brain. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine 2000, 44(2):283-291. 29. Westin C-F, Peled S, Gudbjartsson H, Kikinis R, Jolesz FA: Geometrical Diffusion Measures for MRI from Tensor Basis Analysis. In: The 5th Annual Meeting of ISMRM. Vancouver, Canada; 1997: 1742. 30. Hsu Z-K: Language Circuits of Human Brain: an integrated study of fMRI and probabilistic DTI. Taiwan: National Yang-Ming University; 2010. 31. Parker GJ, Wheeler-Kingshott CA, Barker GJ: Estimating distributed anatomical connectivity using fast marching methods and diffusion tensor imaging. IEEE transactions on medical imaging 2002, 21(5):505-512. 32. Jones DK, Leemans A: Diffusion tensor imaging. Methods in molecular biology 2011, 711:127-144. 33. Gong G, Jiang T, Zhu C, Zang Y, Wang F, Xie S, Xiao J, Guo X: Asymmetry analysis of cingulum based on scale-invariant parameterization by diffusion tensor imaging. Human brain mapping 2005, 24(2):92-98. 34. Lin F, Yu C, Jiang T, Li K, Li X, Qin W, Sun H, Chan P: Quantitative analysis along the pyramidal tract by length-normalized parameterization based on diffusion tensor tractography: application to patients with relapsing neuromyelitis optica. NeuroImage 2006, 33(1):154-160. 35. Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, Watkins KE, Ciccarelli O, Cader MZ, Matthews PM et al: Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage 2006, 31(4):1487-1505. 36. O'Donnell LJ, Westin CF: Automatic tractography segmentation using a high-dimensional white matter atlas. IEEE transactions on medical imaging 2007, 26(11):1562-1575. 37. Wakana S, Caprihan A, Panzenboeck MM, Fallon JH, Perry M, Gollub RL, Hua K, Zhang J, Jiang H, Dubey P et al: Reproducibility of quantitative tractography methods applied to cerebral white matter. NeuroImage 2007, 36(3):630-644. 38. O'Donnell LJ, Westin CF, Golby AJ: Tract-based morphometry for white matter group analysis. NeuroImage 2009, 45(3):832-844. 39. Zhu T, Liu X, Gaugh MD, Connelly PR, Ni H, Ekholm S, Schifitto G, Zhong J: Evaluation of measurement uncertainties in human diffusion tensor imaging (DTI)-derived parameters and optimization of clinical DTI protocols with a wild bootstrap analysis. Journal of magnetic resonance imaging : JMRI 2009, 29(2):422-435. 40. Hess CP, Mukherjee P, Han ET, Xu D, Vigneron DB: Q-ball reconstruction of multimodal fiber orientations using the spherical harmonic basis. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine 2006, 56(1):104-117. 41. Tuch DS, Wisco JJ, Khachaturian MH, Ekstrom LB, Kotter R, Vanduffel W: Q-ball imaging of macaque white matter architecture. Philosophical transactions of the Royal Society of London Series B, Biological sciences 2005, 360(1457):869-879. 42. Wedeen VJ, Hagmann P, Tseng WY, Reese TG, Weisskoff RM: Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine 2005, 54(6):1377-1386. 43. Hermoye L, Saint-Martin C, Cosnard G, Lee SK, Kim J, Nassogne MC, Menten R, Clapuyt P, Donohue PK, Hua K et al: Pediatric diffusion tensor imaging: normal database and observation of the white matter maturation in early childhood. NeuroImage 2006, 29(2):493-504. 44. Wright IC, McGuire PK, Poline JB, Travere JM, Murray RM, Frith CD, Frackowiak RS, Friston KJ: A voxel-based method for the statistical analysis of gray and white matter density applied to schizophrenia. NeuroImage 1995, 2(4):244-252. 45. Ashburner J, Friston KJ: Voxel-based morphometry--the methods. NeuroImage 2000, 11(6 Pt 1):805-821. 46. Jones DK, Symms MR, Cercignani M, Howard RJ: The effect of filter size on VBM analyses of DT-MRI data. NeuroImage 2005, 26(2):546-554. 47. Xu D, Mori S, Shen D, van Zijl PC, Davatzikos C: Spatial normalization of diffusion tensor fields. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine 2003, 50(1):175-182. 48. Chao TC, Chou MC, Yang P, Chung HW, Wu MT: Effects of interpolation methods in spatial normalization of diffusion tensor imaging data on group comparison of fractional anisotropy. Magnetic resonance imaging 2009, 27(5):681-690. 49. Testa C, Laakso MP, Sabattoli F, Rossi R, Beltramello A, Soininen H, Frisoni GB: A comparison between the accuracy of voxel-based morphometry and hippocampal volumetry in Alzheimer's disease. Journal of magnetic resonance imaging : JMRI 2004, 19(3):274-282. 50. Giuliani NR, Calhoun VD, Pearlson GD, Francis A, Buchanan RW: Voxel-based morphometry versus region of interest: a comparison of two methods for analyzing gray matter differences in schizophrenia. Schizophrenia research 2005, 74(2-3):135-147. 51. Snook L, Plewes C, Beaulieu C: Voxel based versus region of interest analysis in diffusion tensor imaging of neurodevelopment. NeuroImage 2007, 34(1):243-252. 52. Alexander DC, Pierpaoli C, Basser PJ, Gee JC: Spatial transformations of diffusion tensor magnetic resonance images. IEEE transactions on medical imaging 2001, 20(11):1131-1139. 53. Rohlfing T: Incorrect ICBM-DTI-81 atlas orientation and white matter labels. Frontiers in neuroscience 2013, 7:4. 54. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE et al: Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 2004, 23 Suppl 1:S208-219. 55. Rollins N, Morriss M, Chia J, Wang ZJ: Comparison of FA Values from TBSS vs Manual ROI. In: The 18th Annual Meeting of ISMRM. Stockholm, Sweden; 2010. 56. Seo Y, Wang ZJ, Ball G, Rollins NK: Diffusion tensor imaging metrics in neonates-a comparison of manual region-of-interest analysis vs. tract-based spatial statistics. Pediatric radiology 2013, 43(1):69-79. 57. Jones DK, Catani M, Pierpaoli C, Reeves SJ, Shergill SS, O'Sullivan M, Golesworthy P, McGuire P, Horsfield MA, Simmons A et al: Age effects on diffusion tensor magnetic resonance imaging tractography measures of frontal cortex connections in schizophrenia. Human brain mapping 2006, 27(3):230-238. 58. Pagani E, Filippi M, Rocca MA, Horsfield MA: A method for obtaining tract-specific diffusion tensor MRI measurements in the presence of disease: application to patients with clinically isolated syndromes suggestive of multiple sclerosis. NeuroImage 2005, 26(1):258-265. 59. Kanaan RA, Shergill SS, Barker GJ, Catani M, Ng VW, Howard R, McGuire PK, Jones DK: Tract-specific anisotropy measurements in diffusion tensor imaging. Psychiatry research 2006, 146(1):73-82. 60. Magnotta VA, Adix ML, Caprahan A, Lim K, Gollub R, Andreasen NC: Investigating connectivity between the cerebellum and thalamus in schizophrenia using diffusion tensor tractography: a pilot study. Psychiatry research 2008, 163(3):193-200. 61. Batchelor PG, Calamante F, Tournier JD, Atkinson D, Hill DL, Connelly A: Quantification of the shape of fiber tracts. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine 2006, 55(4):894-903. 62. Corouge I, Fletcher PT, Joshi S, Gouttard S, Gerig G: Fiber tract-oriented statistics for quantitative diffusion tensor MRI analysis. Medical image analysis 2006, 10(5):786-798. 63. Maddah M, Grimson WE, Warfield SK, Wells WM: A unified framework for clustering and quantitative analysis of white matter fiber tracts. Medical image analysis 2008, 12(2):191-202. 64. Jankovic J: Parkinson's disease: clinical features and diagnosis. Journal of neurology, neurosurgery, and psychiatry 2008, 79(4):368-376. 65. Arias-Carrion O, Stamelou M, Murillo-Rodriguez E, Menendez-Gonzalez M, Poppel E: Dopaminergic reward system: a short integrative review. International archives of medicine 2010, 3:24. 66. Ishizawa T, Mattila P, Davies P, Wang D, Dickson DW: Colocalization of tau and alpha-synuclein epitopes in Lewy bodies. Journal of neuropathology and experimental neurology 2003, 62(4):389-397. 67. Marui W, Iseki E, Kato M, Akatsu H, Kosaka K: Pathological entity of dementia with Lewy bodies and its differentiation from Alzheimer's disease. Acta neuropathologica 2004, 108(2):121-128. 68. Hughes AJ, Daniel SE, Kilford L, Lees AJ: Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico-pathological study of 100 cases. Journal of neurology, neurosurgery, and psychiatry 1992, 55(3):181-184. 69. Peran P, Cherubini A, Assogna F, Piras F, Quattrocchi C, Peppe A, Celsis P, Rascol O, Demonet JF, Stefani A et al: Magnetic resonance imaging markers of Parkinson's disease nigrostriatal signature. Brain : a journal of neurology 2010, 133(11):3423-3433. 70. Cochrane CJ, Ebmeier KP: Diffusion tensor imaging in parkinsonian syndromes: a systematic review and meta-analysis. Neurology 2013, 80(9):857-864. 71. Gironell A, Kulisevsky J: Diagnosis and management of essential tremor and dystonic tremor. Therapeutic advances in neurological disorders 2009, 2(4):215-222. 72. Deng H, Le W, Jankovic J: Genetics of essential tremor. Brain : a journal of neurology 2007, 130(Pt 6):1456-1464. 73. Louis ED, Honig LS, Vonsattel JP, Maraganore DM, Borden S, Moskowitz CB: Essential tremor associated with focal nonnigral Lewy bodies: a clinicopathologic study. Archives of neurology 2005, 62(6):1004-1007. 74. Zesiewicz TA, Elble RJ, Louis ED, Gronseth GS, Ondo WG, Dewey RB, Jr., Okun MS, Sullivan KL, Weiner WJ: Evidence-based guideline update: treatment of essential tremor: report of the Quality Standards subcommittee of the American Academy of Neurology. Neurology 2011, 77(19):1752-1755. 75. Jia L, Jia-Lin S, Qin D, Qing L, Yan Z: A diffusion tensor imaging study in essential tremor. Journal of neuroimaging : official journal of the American Society of Neuroimaging 2011, 21(4):370-374. 76. Klein JC, Lorenz B, Kang JS, Baudrexel S, Seifried C, van de Loo S, Steinmetz H, Deichmann R, Hilker R: Diffusion tensor imaging of white matter involvement in essential tremor. Human brain mapping 2011, 32(6):896-904. 77. Saini J, Bagepally BS, Bhatt MD, Chandran V, Bharath RD, Prasad C, Yadav R, Pal PK: Diffusion tensor imaging: tract based spatial statistics study in essential tremor. Parkinsonism & related disorders 2012, 18(5):477-482. 78. Shin DH, Han BS, Kim HS, Lee PH: Diffusion tensor imaging in patients with essential tremor. AJNR American journal of neuroradiology 2008, 29(1):151-153. 79. Deuschl G, Bain P, Brin M: Consensus statement of the Movement Disorder Society on Tremor. Ad Hoc Scientific Committee. Movement disorders : official journal of the Movement Disorder Society 1998, 13 Suppl 3:2-23. 80. Jahanshad N, Zhan, L., Bernstein, M.A., Borowski, B.J., Jack, C.R., Toga, A.W., Thompson, P.M.: Diffusion tensor imaging in seven minutes: determining trade-offs between spatial and directional resolution. In Proceedings of ISBI 2010:1161-1164. 81. Nolte J: The Human Brain: An Introduction to Its Functional Anatomy: Mosby; 2001. 82. Planetta PJ, Schulze ET, Geary EK, Corcos DM, Goldman JG, Little DM, Vaillancourt DE: Thalamic projection fiber integrity in de novo Parkinson disease. AJNR American journal of neuroradiology 2013, 34(1):74-79. 83. Du G, Lewis MM, Sen S, Wang J, Shaffer ML, Styner M, Yang QX, Huang X: Imaging nigral pathology and clinical progression in Parkinson's disease. Movement disorders : official journal of the Movement Disorder Society 2012, 27(13):1636-1643. 84. Ziegler DA, Wonderlick JS, Salat DH, Growdon JH, Corkin S: DTI-Based Measures of Microstructural Tissue Integrity in Early Parkinson's Disease. In: The 2007 Annual Meeting of SFN. San Diego, USA; 2007. 85. Hattori T, Yuasa T, Aoki S, Sato R, Sawaura H, Mori T, Mizusawa H: Altered microstructure in corticospinal tract in idiopathic normal pressure hydrocephalus: comparison with Alzheimer disease and Parkinson disease with dementia. AJNR American journal of neuroradiology 2011, 32(9):1681-1687. 86. Wills AJ, Jenkins IH, Thompson PD, Findley LJ, Brooks DJ: Red nuclear and cerebellar but no olivary activation associated with essential tremor: a positron emission tomographic study. Annals of neurology 1994, 36(4):636-642. 87. Colebatch JG, Findley LJ, Frackowiak RS, Marsden CD, Brooks DJ: Preliminary report: activation of the cerebellum in essential tremor. Lancet 1990, 336(8722):1028-1030. 88. Hua SE, Lenz FA, Zirh TA, Reich SG, Dougherty PM: Thalamic neuronal activity correlated with essential tremor. Journal of neurology, neurosurgery, and psychiatry 1998, 64(2):273-276. 89. Halliday DM, Conway BA, Farmer SF, Shahani U, Russell AJ, Rosenberg JR: Coherence between low-frequency activation of the motor cortex and tremor in patients with essential tremor. Lancet 2000, 355(9210):1149-1153. 90. Raethjen J, Govindan RB, Kopper F, Muthuraman M, Deuschl G: Cortical involvement in the generation of essential tremor. Journal of neurophysiology 2007, 97(5):3219-3228. 91. Zackowski KM, Bastian AJ, Hakimian S, Mink JW, Perlmutter JS, Koller WC, Thach WT, Jr.: Thalamic stimulation reduces essential tremor but not the delayed antagonist muscle timing. Neurology 2002, 58(3):402-410. 92. Mochizuki H, Ugawa Y: Disappearance of essential tremor after stroke: which fiber of cerebellar loops is involved in posterior limb of the internal capsule? Movement disorders : official journal of the Movement Disorder Society 2011, 26(8):1577. 93. Dupuis MJ, Evrard FL, Jacquerye PG, Picard GR, Lermen OG: Disappearance of essential tremor after stroke. Movement disorders : official journal of the Movement Disorder Society 2010, 25(16):2884-2887. 94. Kanaan RA, Allin M, Picchioni M, Barker GJ, Daly E, Shergill SS, Woolley J, McGuire PK: Gender differences in white matter microstructure. PloS one 2012, 7(6):e38272. 95. Wang JY, Abdi H, Bakhadirov K, Diaz-Arrastia R, Devous MD, Sr.: A comprehensive reliability assessment of quantitative diffusion tensor tractography. NeuroImage 2012, 60(2):1127-1138. 96. Farrell JA, Landman BA, Jones CK, Smith SA, Prince JL, van Zijl PC, Mori S: Effects of signal-to-noise ratio on the accuracy and reproducibility of diffusion tensor imaging-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5 T. Journal of magnetic resonance imaging : JMRI 2007, 26(3):756-767. 97. Aggarwal M, Zhang J, Pletnikova O, Crain B, Troncoso J, Mori S: Feasibility of creating a high-resolution 3D diffusion tensor imaging based atlas of the human brainstem: a case study at 11.7 T. NeuroImage 2013, 74:117-127. 98. Cho ZH, Law M, Chi JG, Choi SH, Park SY, Kammen A, Park CW, Oh SH, Kim YB: An Anatomical Review of Thalamo-Limbic Fiber Tractography:Ultra-High Resolution Direct Visualization of Thalamo-Limbic Fibers ATR, slMFB, imMFB, and Newly Identified Septum Pellucidum Tract. World neurosurgery 2013. 99. Cheng P, Magnotta VA, Wu D, Nopoulos P, Moser DJ, Paulsen J, Jorge R, Andreasen NC: Evaluation of the GTRACT diffusion tensor tractography algorithm: a validation and reliability study. NeuroImage 2006, 31(3):1075-1085.
摘要: 
Diffusion tensor imaging (DTI) has been proved as a powerful tool for parameterizing microstructure changes with various neurodegenerative diseases such as Parkinson's disease (PD) or essential tremor (ET). Although these two diseases have been reported as involving motor cortical dysfunction, the central mechanisms to induce their tremor symptoms are still remain unclear. Previously, researchers started using DTI to quantify white matter changes. However, they barely draw congruent conclusions. Among these studies, we found group quantifications with ROI-based methods seem to provide better sensitivity in detecting subtle changes than those with methods containing spatial normalization. In light of these findings, we hypothesize DTI quantification method that applied with minimal spatial transformation or interpolation could be more sensitive in detecting such alterations.
In this thesis, we provided a full investigation to all mainstream DTI quantification approaches, including their concepts and features. We also compared their advantages and drawbacks. Then, we extended the application of the traditional ROI-based method to a 3D tract-specific one. In chapter 4, we provided a tract-based quantitative framework combined with minimal spatial preprocessing and performed a head-to-head comparison between PD, ET and the normal subjects. We also provided a small pilot study to determine the suitable protocol setting of the DTI sequence.
The results showed that the FA distributions along the corticospinal tract have significant differences across groups. The ET group showed significant higher mean FAs in the internal capsule level of the CST bilaterally as compared to the normal group. The PD group also showed higher mean FAs, but in region near the level of thalamus. Comparing between the PD and ET groups, the ET group showed lower mean FA values around the midbrain region.
Our presented approach successfully demonstrates the white matter changes to the PD, ET and normal subjects by estimating their corticospinal tracts. In such tractography-based statistical approach, we not only proved its advantages in giving detail along certain fiber tract compare to traditional ROI-based approach but also provided better sensitivity to detect subtle microstructure changes than other approaches involving spatial transformation.

磁振張量影像(DTI)是一種強而有力的非侵入性影像技術,可用於觀察各種神經退化性疾病所造成的白質損傷。而帕金森氏症 (Parkinson's disease, 簡稱PD) 以及原發性顫動症 (essential tremor, 簡稱ET) 則是兩種常見的動作障礙疾病。目前雖已證實這兩種疾病與大腦皮質的運動機能不良有相關性,然其導致顫動症狀的神經機轉目前仍尚未確定。近年來,科學家開始將磁振張量影像技術應用於這兩種疾病的探討,然而,這些研究的結果並未表現出高度的一致性。藉由歸納這些研究的結果,我們發現採用傳統ROI (region of interest) 方式進行量化統計的DTI實驗似乎比採用包含影像前處理的方式 (如VBM或是TBSS) 更能觀察到細微的白質變異。因此,我們認為盡可能減少任何破壞性的影像前處理可以有效地提升偵測白質差異的敏感度。
在本論文中,我們探討了所有主流的磁振張量影像量化方式,包含其基本觀念及其特質。也對其優缺點進行觀察和比較。最終,我們提出一個基於神經纖維束影像 (tractography-based) 所發展出的DTI量化分析方式。Tractography-based方式可視為傳統 ROI-based方式的延伸應用, 其利用追蹤出來的神經纖維束影像對沿著特定走向的神經束做非等向性的分析。在論文第四章中,我們將所發展的量化分析方法對皮質脊髓神經束 (corticospinal tract, CST) 進行量化分析,並比較帕金森氏症,原發性顫動症患者與健康受試者之間的差異。實驗中,我們額外進行了一個小型試驗用以定義出最適合臨床使用的DTI掃描參數。
根據結果,三個群組在皮質脊髓神經束可觀察到顯著差異。原發性顫動症患者的質脊髓神經束在靠近內囊的區域 (internal capsule) 較一般受試者在兩側皆有顯著的非等向性值 (fractional anisotropy, FA) 上升。而帕金森氏症患者患者相較於一般受試者則在右側丘腦 (thalamus) 高度的位置有顯著的FA值上升。而比較原發性顫動症及帕金森氏症患者,原發性顫動症族群的FA值在中腦區域較帕金森氏症患者來的低。
透過我們的量化分析方式,成功的觀察到帕金森氏症,原發性顫動症患者與正常受試者在皮質脊髓神經束上的差異。同時,藉由此試驗證實此分析方式應用於磁振張量影像的量化分析上足以提供好的敏感度。
URI: http://hdl.handle.net/11455/91187
其他識別: U0005-2701201410481000
Rights: 同意授權瀏覽/列印電子全文服務,2016-02-25起公開。
Appears in Collections:電機工程學系所

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-103-8096064105-1.pdf15.3 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.