Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91210
標題: 全方位球型驅動椅之遞迴小波模糊小腦模型智慧控制器設計與實現
Design and Implementation of Intelligent Controllers Using RWFCMAC for Omnidirectional Ball-Driven Riding Chair
作者: 邱翊評
Ying-Ping Ciou
關鍵字: no;無
引用: [1] S. C. Lin and C. C.Tsai, 'Development of a self-balancing human transportation vehicle for the teaching of feedback control,' IEEE Trans. Education, vol.52, no 1, pp. 157–168, 2009. [2] M. Sasaki and N. Yanagihara and O. Matsumoto and K. Komoriya, 'Steering control of the personal riding-type wheeled mobile platform (PMP),' IEEE International Conference on Intelligent Robots and Systems, pp. 1697–1702,2005. [3] R. D. Petty, 'Transportation technologies for community policing: a comparison,' in Proc. IEEE ISTAS/CPTED'03, pp. 33–38, 2003. [4] 'The iRoll rideable ball balancer' [Online]. Available: FRrDp4, 2014 [5] T. B. Lauwers and G. A. Kantor and R. L. Hollis, 'A dynamically stable single-wheeled mobile robot with inverse mouse-ball drive,' 2006 IEEE International Conference on Robotics and Automation (ICRA 2006), Orlando, FL,USA, pp.2884 – 2889, May 15-19, 2006. [6] T. Endo and Y. Nakamura,'An omnidirectional vehicle on a basketball,' in Proceeding of 12th International Conference on Advanced Robotics ( ICAR '05),Seattle, WA, USA, pp.573 – 578, 18-20 July 2005. [7] J. M. Yin and J. S. Shin and H. H. Lee, 'On-line tuning PID parameters in an idling engine based on a modified BP neural network by particle swarm optimization,' Artificial Life and Robotics, Vol.14, No.2, pp.129-133, Nov. 2009. http://youtu.be/zclx- [8] M. A. S. K. Khan, and M. A. Rahman, 'Implementation of a wavelet-based MRPID controller for benchmark thermal system,' IEEE Transactions on Industrial Electronics, Vol.57, No.12, pp.4160-4169, Dec. 2010. [9] C. M. Lin and H. Y. Li. 'A novel adaptive wavelet fuzzy cerebellar model articulation control system design for voice coil motors,' IEEE Trans. Ind.Electron, Vol. 59, No. 4,pp. 2024-2033, April 2012. [10] C. C. Tsai and H. C. Huang, and S. C. Lin, 'Adaptive neural network control of a self-balancing two-wheeled scooter,' IEEE Trans. Ind. Electron., vol.57, no 4, pp.1420–1428, 2010. [11] S. A. Billings and H.L. Wei, 'A new class of wavelet networks for nonlinear systems identification,' IEEE Trans. Neural Netw., vol. 16, no.4, pp. 862-874,2005. [12] C. K. Lin, 'Adaptive tracking controller design for robotic system using Gaussian wavelet networks,'IEEE Proc. Control Theory App., vol. 149, no.4,pp.316-322, 2002. [13] C. F. Hsu and C. M. Lin and T. T. Lee, 'Wavelet adaptive backstepping control for a class of nonlinear Systems,'IEEE Trans. Neural Netw., vol. 17, no. 5, pp. 1175-1183, Sept. 2006. [14] C. M Wen and M. Y. Cheng, 'Development of a recurrent fuzzy CMAC with adjustable input space quantization and self-tuning learning rate for control of a dual-axis piezoelectric actuated micromotion stage, 'IEEE trans. Ind. Electron.,Vol. 60, No. 11, , pp. Nov. 2013. [15] C.C. Tsai and C.C. Yu and C.S. Chang, 'Aggregated hierarchical sliding-mode ccontrol for spherical inverted pendulum,' in Proceedings of 2011 8th Asian Control Conference (ASCC) ,Kaohsiung, Taiwan, pp. 914 - 919 ,May 15-18,2011. [16] Honda UX-3, http://www.honda.co.jp/news/2009/c090924.html. [On-line],2009.Available [17] T. Endo, Y. Nakamura, Y. 'An omnidirectional vehicle on a basketball,' in Proceedings of 12th International Conference on Advanced Robotics ( ICAR '05),pp. 573-578, 18-20 July 2005. [18] C. W. Liao and C. C. Tsai and Y. Y. Li and C.-K. Chan, 'Dynamic modeling and sliding-mode control of a ball robot with inverse mouse-ball drive,' in Proceeding of SICE 2008, Tokyo, Japan, pp. 2951-2955, Aug. 2008. [19] S. C. Lin, and C. C. Tsai, 'System design and nonlinear control of an electric unicycle, 'in Proceeding of 2008 National Conference on Intelligent Living Technology, Taichung, Taiwan, pp. 396–402, 2008. [20] R. Hollis, 'Ballbots,' Scientific American Magazine, pp. 72-77, Oct. 2006. [21] C. C. Tsai and C. K. Chan, 'Intelligent backstepping sliding-mode control using recurrent interval type 2 fuzzy neural networks for a ball robot with a four-motor inverse-mouse ball drive.' in Proceeding of SICE 2012 Annual Conference,Akita University, Akita, Japan, August 20-23, 2012. [22] U. Nagarajan and A. Mampetta, G. A. Kantor and R. L. Hollis, 'State transition,balancing, station keeping, and yaw control for a dynamically stable single spherical wheel mobile robot,' IEEE Int. Conf. Robot. and Autom., pp. 998-1003,2009. [23] J. C. Lo and Y. H. Kuo, 'Decoupled fuzzy sliding-mode control,' IEEE Transactions on Fuzzy Systems, vol. 6, no. 3, pp. 426-435, 1998. [24] C. M. Lin and Y.J. Mon, 'Decoupling control by hierarchical fuzzy sliding-mode controller,' IEEE Transactions on Control Systems Technology, vol. 13, no. 4, pp. 593-598, 2005. [25] T. Endo and Y. Nakamura, 'An omnidirectional vehicle on a basketball' IEEE Int. Conf. Advanced Robotics, 2005, pp. 573-578. [26] R. D. Petty, 'Transportation technologies for community policing: a comparison,' in Proceeding IEEE ISTAS/CPTED'03, pp. 33–38, 2003. [27] J. H. Williams, 'Fundamentals of applied dynamics,' John Wiley & Sons Inc.1996. [28] S. Coulibaly and C. C. Tsai and Y. P. Chiu, 'Self-balancing control using wavelet fuzzy CMAC for uncertain omnidirectional ball-driven vehicles,' in Proceeding of 2013 International Conference on Fuzzy Theory and Its Applications, National Taiwan University of Science and Technology, Taipei,Taiwan, Dec.6-8, 2013.
摘要: 
This thesis presents methodologies and techniques using nonlinear control and recurrent wavelet fuzzy CMAC (RWFCMAC) for system design, mathematical modeling and intelligent motion control of an omnidirectional ball-driven chair working on the base of a ball robot with an inverse mouse-ball driving mechanism actuated by four motors. After derivation of the coupled and decoupled models of the chair, three types of intelligent adaptive controllers are designed to allow users to ride for short distance displacement (in home, in hospital, in indoor…). With the linearized model, both adaptive self-balancing and station-keeping controllers are designed using PD control, RWFCMAC and LQR. To achieve a wide range of operations, we use the nonlinear control techniques and RWFCMAC to design and verify the second type of nonlinear adaptive self-balancing and station-keeping controllers. In the third type,nonlinear intelligent adaptive self-balancing and station-keeping controllers are synthesized based on the coupled model of the chair, in order to have a complete control framework. Moreover, the rider's weight and the friction compensation term are taken into account during the controller design process, in order to get high-performance control of the omnidirectional ball-driven chair. Simulations are conducted to examine the effectiveness of the proposed controllers.
The overall experimental control system is equipped with one digital signal processor (DSP), one dual-axis inclinometer (tilt), one rate gyroscope, and one four-
motor inverse-mouse mobile platform with four high-power servo motors with their driving circuits. The control software to realize the three aforementioned control laws
is coded by standard C language, and the control codes are executed by the DSP single-chip controller (TMS320F28335); after executing the proposed control laws, the PWM control signals are sent to corresponding driving circuits for the four DC servo motors . Through experimental results, the proposed controllers together with the built system are shown capable of providing appropriate control actions to satisfactorily achieve self-balancing and station-keeping.

本論文的目的是以非線性控制與遞迴小波模糊小腦模型控制(RWFCMAC)發
展全方位球型驅動座椅的系統設計,數學建模和智慧適應運動控制的方法與其實作技術。全方位球型座椅的驅動是藉由四顆馬達驅動的反向球鼠驅動機構來讓人們,老人或行動不便者人乘坐短距離位移(亦可在家裡,在醫院,在室內場所...等)。在完成該座椅系統的耦合與解耦的數學模型推導後,三種智慧適應運動控制法則被提出自我平衡和原地位置保持控制。基於線性化與解耦數學模型,第一種自身平衡和原地位置保持控制器將被設計藉由 PD,RWFCMAC 以及 LQR 方法達成。為達成更寬範圍控制,第二種控制器使用非線性解耦數學模型以及非線性與遞迴小波模糊小腦模型控制技術,來設計非線性智慧適應模型自身平衡和原地位置保持控制法則。第三種控制器使用非線性耦合數學模型來完成完整的控制。同時騎乘者的重量以及摩擦力的補償項是被考慮進去以達成高效能的全方位球型驅動載具。電腦模擬驗證所提出的控制法則的可行性與有效性。該實驗平台包含一個數位信號處理器(DSP),一個雙軸傾角傳感器(傾斜儀),一個加速度計(陀螺儀),以及一含四顆四個大功率伺服馬達(125W)驅動與其驅動器之反向球鼠驅動運動平台。 該系統軟體是用以 C 程式語言實現上述的三個智慧適應運動控制法則,藉由雙軸向的傾斜儀和陀螺儀的角速度傳感器計量測出騎乘者的身體傾斜角與其速率,經 DSP 單晶片控制器(TMS320 F28335)的運算後,再將 PWM 控制信號被發送到四個直流伺服馬達之驅動器,進而達成自身平衡和原地位置保持控制。實驗結果說明所提出的控制法則與所研製的系統,能夠提供適當的控制行為來達成自身平衡以及原地位置保持控制。
URI: http://hdl.handle.net/11455/91210
其他識別: U0005-2104201510424600
Rights: 不同意授權瀏覽/列印電子全文服務
Appears in Collections:電機工程學系所

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-103-7101064204-1.pdf5.14 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.