Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91236
標題: 加入自我適應非連續導通控制與玻璃基板製作被動元件的雙相位全整合型直流對直流轉換器
A Two-Phase Fully-Integrated DC-DC Converter with Self-Adaptive DCM Control and GIPD Passive Components
作者: 賈竹翔
Chu-Hsiang Chia
關鍵字: DC-DC converter;fully-integrated converter;GIPD process;直流對直流轉換器;全整合型轉換器;玻璃基板製作被動元件
引用: [1] C.-H. Chia, P.-S. Lei, R. C.-H. Chang, and Y.-B. Hong 'A fully integrated dc-dc converter for dynamic voltage scaling applications,' IEEE Symposium on Circuits and Systems, May 2012, pp. 2263-2266. [2] W. Xu, Y. Li, Z. Hong, and D. Killat, 'A 90% peak efficiency single-inductor dual-output buck-boost converter with extended-PWM control,' IEEE International Solid-State Circuits Conference Digest of Technical Papers, Feb. 2011, pp. 394-396. [3] J. Kim, D. S. Kim, and C. Kim, 'A single-inductor 8-channel output DC-DC boost converter with time-limited one-shot current control and single shared hysteresis comparator,' Symposium on VLSI Circuits, Jun. 2011, pp. 14-15. [4] Y.-H. Lee, T.-C. Huang, Y.-Y. Yang, W.-S. Chou, K.-H. Chen C.-C. Huang, and Y.-H. Lin, 'Minimized transient and steady-state cross regulation in 55-nm CMOS single-inductor dual-output (SIDO) step-down DC-DC converter,' IEEE Journal of Solid-State Circuits, vol. 46, no. 11, pp. 2488-2499, Nov. 2011. [5] S.-W. Wang, G.-H. Cho, and G.-H. Cho, 'A high-stability emulated absolute current hysteretic control single-inductor 5-output switching DC-DC converter with energy sharing and balancing,' IEEE International Solid-State Circuits Conference Digest of Technical Papers, Feb. 2012, pp. 276-278. [6] G.-L. Li, Y.-C. Chen, Y.-T. Chang, C.-H. Tsai, and H.-S. Chen, 'A single-inductor dual-output DC-DC converter with output voltage mode switching,' IEEE Workshop on Control and Modeling for Power Electronics, Jun. 2012, pp. 1-4. [7] Y.-J. Moon, Y.-S. Roh, J.-C. Gong, and C. Yoo, 'Load-independent current control technique of a single-inductor multiple-output switching DC-DC converter,' IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 59, no. 1, pp. 50-54, Jan. 2012. [8] Y. Kobori, F. Zhao, Q. Li, M. Li, S. Wu, Z. Nosker, S. N. Mohyar, N. takai, H. Kobayashi, T. Odaguchi, I. Nakanishi, K. Ueda, and J.-I. Matsuda, 'Single inductor dual output switching converter using exclusive control method,' International Conference on Power Engineering, Energy and Electrical Drives, May 2013, pp. 320-325. [9] M. Bathily, B. Allard, and F. Hasbani, 'A 200-MHz integrated buck converter with resonant gate drivers for an RF power amplifier,' IEEE Transactions on Power Electronics, vol. 27, no. 2, pp. 610-613, Feb. 2012. [10] M. Wens and M. Steyaert, 'A fully integrated CMOS 800-mW four-phase semiconstant on/off-time step-down converter,' IEEE Transactions on Power Electronics, vol. 26, no. 2, pp. 326-333, Feb. 2011. [11] W. Kim, D. M. Brooks, and G.-Y. Wei, 'A fully-integrated 3-level DC/DC converter for nanosecond-scale DVS with fast shunt regulation,' IEEE International Solid-State Circuits Conference Digest of Technical Papers, Feb. 2011, pp. 268-270. [12] X. Gong, J. Ni, Z. Hong, and B. Liu, 'An 80% peak efficiency, 0.84mW sleep power consumption, fully-integrated DC-DC converter with buck/LDO mode control,' IEEE Custom Integrated Circuits Conference, Sep. 2011, pp. 1-4. [13] M. Steyaert, T. Van Breussegem, H. Meyvaert, P. Callemeyn, and M. Wens, 'DC-DC converters: from discrete towards fully integrated CMOS,' Proceedings of the European Solid-State Circuits Conference, Sep. 2011, pp. 42-49. [14] P.-H. Lan, Y.-H. Kuo, and P.-C. Huang, 'An area-efficient CMOS switching converter with on-chip LC filter using feedforward ripple cancellation technique,' International Symposium on VLSI Design, Automation, and Test, Apr. 2012, pp. 1-4. [15] S. S. Kudva and R. Harjani, 'Fully integrated on-chip DC-DC converter with a 450x output range,' IEEE Journal of Solid-State Circuits, vol. 46, no. 18, pp. 1940-1951, Aug. 2011. [16] P. Callemeyn, D. De Jonghe, G. Gielen, and M. Steyaert, 'Optimization of fully-integrated power converter circuits comprising tapered inductor layout and temperature effects,' International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design, Sep. 2012, pp. 37-40. [17] A. J. Soto, E. O. Lindstrom, A. R. Oliva, P. S. Mandolesi, and F. C. Dualibe, 'Fully integrated single-inductor multiple-output (SIMO) DC-DC converter in CMOS 65 nm technology,' Latin American Symposium on Circuits and Systmes, Feb. 2013, pp. 1-4. [18] X. Qu, Z.-K. Zhou, X. Ming, and B. Zhang, 'A 3.6-?W sub-1V fast-transient-response output-capacitor-free LDO regulator in 0.13-?m CMOS technology,' International Conference on Solid-State and Integrated Circuit Technology, Oct. 2012, pp. 1-3. [19] C. Zhan and W.-H. Ki, 'An output-capacitor-free adaptively biased low-dropout regulator with subthreshold undershoot-reduction for SoC,' IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 59, no. 5, pp. 1119-1131, May 2012. [20] X. Qu, Z.-K. Zhou, B. Zhang, and Z.-J. Li, 'An ultralow-power fast-transient capacitor-free low-dropout regulator with assistant push-pull output stage,' IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 60, no. 2, pp. 96-100, Feb. 2013. [21] H.-Y. Huang, C.-Y. Chen, and K.-H. Cheng, 'External capacitorless low dropout linear regulator using cascode structure,' International Symposium on Design and Diagnostics of Electronic Circuits and Systems, Apr. 2013, pp. 236-239. [22] G. Villar-Pique, H. J. Bergveld, and E. Alarcon, 'Survey and benchmark of fully integrated switching power converters: switched-capacitor versus inductive approach,' IEEE Transactions on Power Electronics, vol. 28, no. 9, pp. 4156-4167, Sep. 2013. [23] D.-L. Ming, Y.-H. Lee, and K.-H. Chen, 'A high efficiency adaptive frequency hopping controlled 1/3X step-down switch capacitor DC-DC converter with deep-green mode operation,' IEEE International Symposium on Circuits and Systems, May 2012, pp. 966-969. [24] T. Van Breussegem and M. Steyaert, 'A fully integrated 74% efficiency 3.6V to 1.5V 150mW capacitive point-of-load DC/DC-converter,' Proceedings of the European Solid-State Circuits Conference, Sep. 2010, pp. 434-437. [25] Y. K. Ramadass, A. A. Fayed, and A. P. Chandrakasan, 'A fully-integrated switched-capacitor step-down DC-DC converter with digital capacitance modulation in 45 nm CMOS,' IEEE Journal of Solid-State Circuits, vol. 45, no. 12, pp. 2557-2565, Dec. 2010. [26] P. Artillan, M. Brunet, D. Bourrier, J.-P. Laur, N. Mauran, L. Bary, M. Dilhan, B. Estibals, C. Alonso, and J. L. Sanchez, 'Integrated LC filter on silicon for DC–DC converter applications,' IEEE Transactions on Power Electronics, vol. 26, no. 8, pp. 2319-2325, Jun. 2011. [27] J. Lee, Y.-K. Hong, S. Bae, J. Jalli, P. Jihoon, G. S. Abo, G. W. Donohoe, and B.-C. Choi, 'Integrated ferrite film inductor for power system-on-chip (PowerSoC) smart phone applications,' IEEE Transactions on Magnetics, vol. 47, no. 2, pp. 304-307, Feb. 2011. [28] W. Zhang, M. A. Wilkowski, J. Weld, A. Lotfi, 'A 20MHz monolithic DC-DC converter manufactured with the first commercially viable silicon magnetics technology,' International Power Electronics and Motion Control Conference, Jun. 2012, pp. 705-712. [29] S. Shapira, A. Unikovski, G. Peled, D. Cristea, E. Rotman, A. Eshkoli, A. Svetlitza, and Y. Nemirovsky, 'CMOS DC to DC switched converter with on chip inductors,' International Symposium on Power Semiconductor Devices and ICs, Jun. 2012, pp. 69-72. [30] M. Araghchini, J. Chen, V. Doan-Nguyen, D. V. Harburg, D. Jin, J. Kim, M. S. Kim, S. Lim, B. Lu, D. Piedra, J. Qiu, J. Ranson, M. Sun, X. Yu, H. Yun M. G. Allen, J. A. del Alamo, G. DesGroseilliers, F. Herrault, J. H. Lang, C. G. Levey, C. B. Murray, D. Otten, T. Palacios, D. J. Perreault, and C. R. Sullivan, 'A technology overview of the powerchip development program,' IEEE Transactions on Power Electronics, vol. 28, no. 9, pp. 4182-4201, Sep. 2013. [31] C. R. Sullivan, D. V. Harburg, J. Qiu, C. G. Levey, and D. Yao, 'Integrating magnetics for on-chip power: a perspective,' IEEE Transactions on Power Electronics, vol. 28, no. 9, pp. 4342-4353, Sep. 2013. [32] K. Jang, J. Choi, C. Park, and J. Choi, 'A voltage-mode DC-DC converter with enhanced transient responses,' IEEE International Symposium on Circuits and Systems, May 2012, pp. 974-977. [33] C.-L. Weyc C.-H. Hsu, and T.-W. Chang, 'A voltage-mode boost DC-DC converter with a constant-duty-cycle pulse control,' Latin American Symposium on Circuits and Systmes, Feb. 2013, pp. 1-4. [34] M. Gendensuren, J.-W. Park, C.-S. Lee, N.-S. Kim, 'Low power integrated 0.35 μm CMOS voltage-mode DC-DC boost converter,' International Conference on Power Engineering, Energy and Electrical Drives, May 2013, pp. 502-505. [35] C.-M. Chen, K.-H. Hsu, and C.-C. Hung, 'A high efficiency current-mode DC-DC step-down converter with wide range of output current,' IEEE International Midwest Symposium on Circuits and Systems, Aug. 2010, pp. 1009-1012. [36] P.-H. Lan and P.-C. Huang, 'A high efficiency FLL-assisted current-controlled DC-DC converter over light-loaded range,' IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 59, no. 10, pp. 2468-2476, Oct. 2012. [37] Y.-P. Su, Y.-K. Luo, Y.-C. Chen, and K.-H. Chen, 'Current-mode synthetic control technique for high-efficiency DC--DC boost converters over a wide load range,' IEEE Transactions on Very Large Scale Integration Systems, vol. PP, no. 99, pp. 1, Aug. 2013. [38] C.-S. Lee, Y.-J. Oh, K.-Y. Na, Y.-S. Kim, and N.-S. Kim, 'Integrated BiCMOS control circuits for high-performance DC–DC boost converter,' IEEE Transactions on Power Electronics, vol. 28, no. 5, pp. 2596-2603, May 2013. [39] R.C.-H. Chang, H.-M. Chen, C.-H. Chia, and P.-S. Lei, 'An exact current-mode PFM boost converter with dynamic stored energy technique,' IEEE Transactions on Power Electronics, vol. 24, no. 4, pp. 1129-1134, Apr. 2009. [40] A. Emira, H. Elwan, and S. Abdelaziz, 'DC-DC converter with on-time control in pulse-skipping modulation,' IEEE International Symposium on Circuits and Systems, May 2010, pp. 2746-2749. [41] W. Yan, C. Pi, W. Li, and R. Liu, 'Dynamic dead-time controller for synchronous buck DC-DC converters,' Electronics Letters, vol. 46, no. 2 pp. 164-165, Feb. 2010. [42] D. D.-C. Lu and S.-K. Ki, 'Light-load efficiency improvement in buck-derived single-stage single-switch PFC converters,' IEEE Transactions on Power Electronics, vol. 28, no. 5, pp. 2105-2110, May 2013. [43] Z. Sun, K. W. R. Chew, H. Tang, and L. Siek, 'Adaptive gate switching control for discontinuous conduction mode DC–DC converter,' IEEE Transactions on Power Electronics, vol. 29, no. 3, pp. 1311-1320, Mar. 2014. [44] M. Ichihashi, 'Design requirement of on-chip DC-DC converter for block-level dynamic voltage scaling,' Ph.D. Research in Microelectronics and Electronics, Jul. 2009, pp. 64-67. [45] M. Ichihashi, H. Lhermet, E. Beigne, F. Rothan, M. Belleville, and A. Amara, 'On-chip DC-DC converter for IP-level dynamic voltage scaling,' IEEE North-East Workshop on Circuits and Systems and TAISA Conference, Jul. 2009, pp. 1-4. [46] C.-L. Wey, C.-H. Hsu, and Gang-Neng Sung, 'A single-inductor programmable-output (SIPO) DC-DC converter for low power applications,' Conference of IEEE Industrial Electronics Society, Nov. 2013, pp. 316-320. [47] W. Eberle, Z. Zhang, Y.-F. Liu, and P. C. Sen, 'A current source gate driver achieving switching loss savings and gate energy recovery at 1-MHz,' IEEE Transactions on Power Electronics, vol. 23, no. 2, pp. 678-691, Feb. 2008. [48] C. Gandhimathi, 'DC-DC converter with improved light load efficiency and transient response,' International Conference on Communications and Signal Processing, Apr. 2013, pp. 176-180. [49] Y.-T. Lee, C.-L. Wei, and C.-H. Chen, 'An integrated step-down DC-DC converter with low output voltage ripple,' IEEE Conference on Industrial Electronics and Applications, Jun. 2010, pp. 1373-1378. [50] J.-C. Tsai, T.-Y. Huang, W.-W. Lai, and K.-H. Chen, 'Dual modulation technique for high efficiency in high-switching buck converters over a wide load range,' IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 58, no. 7, pp. 1671-1680, Jul. 2011. [51] Y. Ye, J. Qiu, L. Dong, and L. He, 'PWM/PSM dual-mode controller for high efficiency DC-DC buck converter,' Asia-Pacific Power and Energy Engineering Conference, Mar. 2010, pp. 1-4. [52] L.-F. Shi and W.-G. Jia, 'Mode-selectable high-efficiency low-quiescent-current synchronous buck DC–DC converter,' IEEE Transactions on Industrial Electronics, vol. 61, no. 5, pp. 2278-2285, May, 2014. [53] J. Rosenfeld and E. G. Friedman, 'On-chip DC-DC converters for three- dimensional ICs,' Quality of Electronic Design, Mar. 2009, pp. 759-764. [54] J. Rosenfeld and E. G. Friedman, 'A distributed filter within a switching converter for application to 3-D integrated circuits,' IEEE Transactions on Very Large Scale Integration Systems, vol. 19, no. 6, pp. 1075-1085, Jun. 2011. [55] T. Hilt, H. Boutry, R. Franiatte, F. Rothan, N. Sillon, F. Stam, A. Mathewson, N. Wang, C. O'Mathuna, and K. Rodgers, 'DC/DC converter 3D assembly for autonomous sensor nodes,' Proceedings Electronic Components and Technology Conference, Jun. 2010, pp. 834-839. [56] V. Pala, H. Peng, P. Wright, M. M. Hella, and T. P. Chow, 'Integrated high-frequency power converters based on GaAs pHEMT: technology characterization and design examples,' IEEE Transactions on Power Electronics, vol. 27, no. 5, pp. 2644-2656, May 2012. [57] A. W. Lotfi, Q. Li, and F. C. Lee, 'Integrated, high-frequency DC-DC converter technologies leading to monolithic power conversion,' International Conference on Integrated Power Electronics Systems, Mar. 2012, pp. 1-8. [58] J. A. Herbsommer, J. Noquil, O. Lopez, and J. Sherman, 'Integration of power semiconductors devices: synchronous buck converters in a package,' IEEE Applied Power Electronics Conference and Exposition, Feb. 2012, pp. 1705-1707. [59] H. Peng, D. I. Anderson, and M. M. Hella, 'A 100 MHz two-phase four-segment DC-DC Converter with light load efficiency enhancement in 0.18/spl mu/m CMOS,' IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 60, no. 8, pp. 2213-2224, Aug. 2013. [60] D. Disney and Z. J. Shen, 'Review of silicon power semiconductor technologies for power supply on chip and power supply in package applications,' IEEE Transactions on Power Electronics, vol. 28, no. 9, pp. 4168-4181, Sep. 2013. [61] F. Waldron, R. Foley, J. Slowey, A. N. Alderman, B. C. Narveson, and S. C. O. Mathuna, 'Technology roadmapping for power supply in package (PSiP) and power supply on chip (PwrSoC),' IEEE Transactions on Power Electronics, vol. 28, no. 9, pp. 4137-4145, Sep. 2013. [62] T. Taufik, R. Prasetyo, D. Dolan, and D. Garinto, 'A new multiphase multi-interleaving buck converter with bypass LC,' Conference on IEEE Industrial Electronics Society, Nov. 2010, pp.291-295. [63] Y.-P. Huang, Y.-P. Su, Y.-H. Lee, K.-Y. Chu, C.-J. Shih, K.-H. Chen, M.-J. Du, and S.-H. Cheng, 'Single controller current balance (SCCB) technique for voltage-mode multi-phase buck converter,' IEEE Symposium on Circuits and Systems, May 2011, pp. 761-764. [64] M. Nikolic, R. Enne, and H. Zimmermann, 'A clock management system for multi-phase DC-DC converters in 0.35?m CMOS technology,' International Symposium on Signals, Systems, and Electronics, Oct. 2012, pp. 1-6. [65] Y. Ahn, H. Nam, and J. Roh, 'A 50-MHz fully integrated low-swing buck converter using packaging inductors,' IEEE Transactions on Power Electronics, vol. 27, no. 10, pp. 4347-4356, Oct. 2012. [66] C. Huang and P. K. T. Mok, 'A 100 MHz 82.4% efficiency package-bondwire based four-phase fully-integrated buck converter with flying capacitor for area reduction,' IEEE Journal of Solid-State Circuits, vol. 48, no. 12, pp. 2977-2988, Dec. 2013. [67] C. Huang and P. K. T. Mok, 'An 84.7% efficiency 100-MHz package bondwire-based fully integrated buck converter with precise DCM operation and enhanced light-load efficiency,' IEEE Journal of Solid-State Circuits, vol. 48, no. 11, pp. 2595-2607, Nov. 2013. [68] F. Luo and D. Ma, 'An integrated switching dc-dc converter with dual-mode pulse-train/PWM control,' IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 56, no. 2, pp. 152-156, Feb. 2009. [69] B. Yuan, X.-Q. Lai, H.-Y. Wang, and L.-F. Shi, 'High-efficient hybrid buck converter with switch-on-demand modulation and switch size control for wide-load low-ripple applications,' IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 9, pp. 3329-3338, Jul. 2013. [70] Y. Su, Q. Li, and F. C. Lee, 'Design and evaluation of a high-frequency LTCC inductor substrate for a three-dimensional integrated dc/dc converter,' IEEE Transactions on Power Electronics, vol. 28, no. 9, pp. 4342-4353, Sep. 2013. [71] S. Ko?se and E. G. Friedman, 'An area efficient fully monolithic hybrid voltage regulator,' IEEE International Symposium on Circuits and Systems, May 2010, pp. 2718-2721. [72] J. Wibben and R. Harjani, 'A high-efficiency DC-DC converter using 2nH integrated inductors,' IEEE Journal of Solid-State Circuits, vol. 43, no. 4, pp. 844-854, Apr. 2008.
摘要: 
This dissertation presents a two-phase fully-integrated DC-DC converter for modern electronic systems, especially for system-in-package (SiP) systems with passive components fabricated using a glass-substrate integrated passive device (GIPD) process. Before introducing this converter, the mode-control circuit and the high-speed DC-DC converter are proposed. The technique of mode-control circuit is the foundation of the self-adaptive DCM controller and can improve the efficiency at light load current. The converter using the mode-control circuit improves the efficiency of 36.14% compared to a conventional PWM converter at load current of 10-mA. The high-speed converter raises the switching frequency to 50-MHz and reduces the inductor and capacitor to 10-nH and 100-nF. The transient response is 47-ns and 279-ns from heavy to light load and from light to heavy load, respectively. In the proposed two-phase fully-integrated DC-DC converter, the self-adaptive discontinuous-conduction mode (DCM) controller and low-swing/full-swing buffer were incorporated to reduce the switching loss and maintain high efficiency at high switching frequency. A secondary phase and phase controller were added to increase the output power and reduce the output ripple. The proposed GIPD solution packages a standard complementary metal-oxide semiconductor (CMOS) process and GIPD process in 3D format to reduce the footprint of the system. The proposed self-adaptive DCM controller and low-swing/full-swing buffer improve efficiency of 15% in measurement compared to our previous work on GIPD process [1] in simulation. The peak efficiency of the proposed converter was 79.09% at a 400-mA load current, 5% higher than the peak efficiency in [1]. The maximal output power could reach 720-mW and the maximal switching frequency (fCCM) was designed to be 70-MHz (measured at 50-MHz) with only two 6-nH inductors and one 15-nF capacitor.

本論文主要提出一個用於現代電子系統,特別是SiP (system in package)系統所使用的雙相位全整合型直流對直流轉換器,此轉換器的被動元件是採用玻璃基底整合被動元件(GIPD)製程所實現。在介紹此轉換器前,論文中會先介紹模式控制器(mode-control circuit)與高速轉換器(high-speed converter)。模式控制器是自動適應非連續導通控制器的設計基礎,可有效地提升轉換器在輕載的效率。脈衝寬度調節(PWM)轉換器使用模式控制器在負載為10-mA時可提升36.14%效率。而高速轉換器則是提升轉換器切換頻率至50-MHz,將被動元件縮小至10-nH電感與100-nF電容,而這個高速轉換器具有快速的暫態響應,時間分別是從重載到輕載的47-ns與從輕載到重載的279-ns。為了在雙相位全整合型直流對直流轉換器的高切換頻率下減少切換損耗且維持輕載效率,在其中加入自動適應非連續導通控制器與低振幅/全振幅緩衝器。而為了增加輸出功率與降低輸出漣波,轉換器中也加入第二個相位與相位控制器。使用GIPD與CMOS兩種晶片互相做三維堆疊的技術可以有效地降低系統的大小。加入自動適應非連續導通控制器與低振幅/全振幅緩衝器可使這個轉換器在負載為10-mA時比之前提出使用GIPD製程的轉換器[1]高出15%的轉換效率。這次提出的轉換器在負載為400-mA時有79.09%的最高效率,比之前提出的高出5%。而此轉換器的最大輸出功率為720-mW,模擬時最大切換頻率為70-MHz,量測時為50-MHz。而此轉換器所使用的被動元件大小為兩個6-nH的電感與一個15-nF的電容。
URI: http://hdl.handle.net/11455/91236
其他識別: U0005-2811201416191843
Rights: 同意授權瀏覽/列印電子全文服務,2017-08-31起公開。
Appears in Collections:電機工程學系所

Files in This Item:
File SizeFormat Existing users please Login
nchu-103-7096064419-1.pdf2.28 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.