Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91273
標題: Fabrication of PDMS Flexible Thermoelectric Generators
二甲基矽氧烷可撓式熱發電器之研製
作者: 林嘉哲
Jia-Zhag Lin
關鍵字: Thermoelectric generator;Fexible;PDMS.;熱發電元件;可撓性;PDMS
引用: http://commons.wikimedia.org/wiki/File:US_energy_consumption.png https://en.wikipedia.org/wiki/Thermoelectric_effect W. Qu, M. Plotner and W. Fischer, 'Microfabrication of thermoelectric generators on flexible foil substrates as a power source for autonomous Microsystems,' Journal of Micromechanics and Microengineering, Vol. 2, pp. 146-152, 2001. S. Hasebe, J. Ogawa, T. Toriyama, S. Sugiyama, H. Ueno and K. Itaigawa, 'Design and Fabrication of flexible thermopile for power generation,' International Symposium on M.H.S 2003, pp. 287-291, 2003. I. Koichi, U. Hiroshi, S. Masayoshi, T. Toshiyuki and S. Susumu, 'Fabrication of flexible thermopile generator,' Journal of Micromechanics and Microengineering, Vol. 15, pp. 233-238, 2005. J. Weber, K. Potje-Kamloth, F. Haase, P. Detemple, F. Volklein and T. Doll, 'Coin-size coiled-up polymer foil thermoelectric power generator for wearable electronics,' Sensors and Actuators A: Physical, Vol. 132, pp. 325-330, 2006 W. Glatz, C. Hierold, 'Flexible Micro Thermoelectric Generator,' IEEE 20th International Conference on MEMS, pp. 89-92, 2007. E. Schwyter, W. Glatz, L. Durrer, C. Hierold,' Flexible Micro Thermoelectric Generator based on Electroplated 〖Bi〗_(2+x) 〖Te〗_(3-x),' Design, Test, Integration and Packaging of MEMS/MOEMS 2008, pp. 46-48, 2008. S. E. Jo, M. K. Kim and Y. J. Kim, 'Flexibe Thermoelectric Generator for Human Body Heat Energy Harvesting,' Electronics Letters, Vol. 84, pp. 1015-1017, 2012. T. Park, C. Park, B. Kim, H. Shin and E. Kim, 'Flexible PEDOT electrodes with large thermoelectric power factors to generate electricity by the touch of fingertips,' Energy Environ Science, Vol. 6, pp. 788-792, 2013. S. J. Kim, J. H. We and B. J. Cho, 'A wearable thermoelectric generator fabricated on a glass fabric, ' Energy Environ Science, Vol. 7, pp. 1959-1965, 2014. G. Pasold, P. Etlin, M. Hahn, U. Muster, V. Nersessian, D, Bonfrate, R. Buser, M.Cucinelli, M. Gutsche, M. Kehl, N. Zach and R. Hazelden, 'Powering Wireless Sensors: Microtechnology-Based Large-Area Thermoelectric Generator for Mass Applications,' IEEE Conference on Sensors, pp. 1293-1296, 2011. K. Itoigawa, H. Ueno, M. Shizaki, T. Toriyama and S. sugiyama, 'Thermoelectric micro power generator utilizing self-standing polysilicon-metal thermopile,' Journal of Micromechanics and Microengineering, Vol. 15, no.9, pp. 233-238, 2005. R. Y. Nuwayhid, A. Shihadeh, N. Ghaddar, 'Development and testing of a domestic woodstove thermoelectric generator with natural convection cooling,' Energy Conversion and Management, Vol. 46, pp. 1631-1643, 2005. P. Li, L. Cai, P. C. Zhai, X. F. Tang, Q. J. Zhang and M. Niio, 'Design of a concentration solar thermoelectric generator,' Journal of Electronic Material, Vol. 39, no. 9, pp. 233-238, 2005. http://en.wikipedia.org/wiki/Bismuth_telluride A. Saci, J.Battaglia, A. Kusiak, R. Fallica and M. Longo, 'Thermal conductivity measurement of 〖Sb〗_2 〖Te〗_3 phase change nanowire,' Applied Physics Letters, pp.263103.1-263103.5, Vol. 104, 2014. F. P. Incropera, D. P. Dewitt, T. L. Bergmen and A. S. Lavine, 'Introduction to Heat Transfer 5th,' John Wiley & Sons. http://www.mit.edu/~6.777/matprops/pdms.htm 蘇癸陽, 實用電鍍理論與實際, 復文書局, 1994. L.Gisbert, K. Ingo, R. Koch and Rolf, 'Electrodeposition of antimony telluride,' Journal of the Electrochemical Society, Vol. 149, pp. C474-C478, 2002. 余立人, 可撓性熱電能源轉換器, 華梵大學碩士論文, 2009. http://web.tongji.edu.cn/~math/bluebird/zsd/n3/z5/z5.htm H. B. Nottage and P. L. Winskell, 'An Alternating Current Thermoelectric Generator, ' Journal of Engineering for Power, Vol.85, pp.311-323, 1963. D. Grgic, T. Ungan, M. Kostic and L. M. Reindl, 'Ultra-low Input Voltage DC-DC Converter for Micro Energy Haresting,' Power MEMS, pp. 265-268, 2009.
摘要: 
This study develops the fabrication of PDMS (Polydimethylsiloxane) flexible thermoelectric generators. The thermoelectric structure is composed of 24 pairs thermocouple that is made of P-type thermoelectric material 〖'Bi' 〗_'2' 〖'Te' 〗_'3' and N-type thermoelectric material 〖'Sb' 〗_'2' 〖'Te' 〗_'3' . Each thermocouple is 4 mm wide, 1.5 mm long and 2 mm high, the space between thermocouples is 0.7 mm, and the surface area is 50×50 〖'cm' 〗^'2' . The flexible thermoelectric generators is designed by Solidworks and AutoCAD, and then assembled by turning over the mold. In order to achieve more flexible, perfused PDMS is used to manufacture the supporting base and package the thermoelectric generators. When the hot part temperature is 373 k and cold part temperature 293 k, the practical effect of the thermoelectric generators temperature difference between internal 55 K. The experimental results show The generators have an output voltage 3.37 V and a output power of 25.81 'μW' at temperature difference of 55 K. The voltage factor of the thermoelectric generators is 2.45 mV/' c' 'm' ^'2' K, and the power factor is '1.38×' 〖'10' 〗^'-2' 'μW/' 〖'cm' 〗^'2' 'K' ^'2' .

本研究利用高分子材料二甲基矽氧烷(Polydimethylsiloxane ,PDMS)配合P型熱電材料鍗化鉍和N型熱電材料鍗化銻製作具高度可撓性的熱發電元件,熱發電元件的面積為50×50 cm2 ,由24對熱電偶串連成熱發電結構,單一熱電偶結構尺寸為寬度4 mm、長度1.5 mm、高度2 mm、間距0.7 mm。利用Solidworks和AutoCAD繪製熱發電元件的結構設計圖後,再利用翻模的方式,製備熱電偶的形狀後進行熱發電結構的組裝,並灌注二甲基矽氧烷作為支撐基板和封裝,完成熱發電元件的製作。透過有限元素分析軟體ANSYS模擬結果可知,當熱發電元件冷熱端溫度分別為373 K和293 K時,熱發電元件內部實際作用溫差為55 K,而實驗結果顯示在此溫差下,熱發電元件輸出電位差訊號為3.37 V,輸出功率為25.81 μW,熱發電元件的電壓因子為2.45 mV/ cm2 K,功率因子為1.38×〖10〗^(-2 ) μW/ cm2 K^2 。
URI: http://hdl.handle.net/11455/91273
Rights: 同意授權瀏覽/列印電子全文服務,2017-08-19起公開。
Appears in Collections:機械工程學系所

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-104-7102061068-1.pdf2.15 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.