Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91337
標題: Experimental Study on Water-gas Shift Reaction Performance at Ultrahigh Temperatures
超高溫水氣轉換反應之實驗探討
作者: 方建閔
Chien-Min Fang
關鍵字: Ultrahigh temperature;water-gas shift reaction (WGSR);catalyst support;CO conversion;H2 yield;超高溫;水氣轉換;觸媒載體;一氧化碳轉化率;產氫率
引用: [1] 2014年能源科技研究發展白皮書, 經濟部能源局。 [2] 蘇育正.(2007).Au/TiO2 觸媒應用於水煤氣轉移反應與富氫氣體中選擇性氧化一氧化碳.臺灣大學化學工程學研究所學位論文, 1-77. [3] 林筵翔.(2013).超高溫水氣轉化反應觸媒與膜反應器合成氣產氫之實驗探討.中興大學機械工程學系所學位論文, 1-76. [4] 林志彥.(2014).煤基合成氣之超高溫水氣轉化反應觸媒動力開發.中興大學機械工程學系所學位論文, 1-55. [5] 彭士峰.(2011).以理論計算方式研究以下反應機構: I.水煤氣轉換反應在 M/TiO2 (110)(M= Pt, Au, Cu) 表面之反應路徑探討 II.硫化氫在金屬表面 W (111) 的分解與氧化.臺灣師範大學化學系學位論文, 1-142. [6]林祐賢.(2006).氧化鋁-金屬氧化物複合擔載奈米金觸媒應用於甲醇部分氧化產製氫氣之研究.中央大學化學工程與材料工程學系學位論文, 1-110. [7] 趙怡欽、翁鴻山、邱輝煌、賴維祥、王鴻博、李聰盛、江滄柳.(2005).奈米觸媒應用於氣化合成氣淨潔發電技術研發與推廣計畫 (I). [8] 林祐賢. (2006). 氧化鋁-金屬氧化物複合擔載奈米金觸媒應用於甲醇部分氧化產製氫氣之研究. 中央大學化學工程與材料工程學系學位論文, 1-110. [9] Smil, V.(2000).Energy in the twentieth century: resources, conversions, costs, uses, and consequences.Annual Review of Energy and the Environment, 25(1), 21-51. [10] Linga, P., Kumar, R., & Englezos, P.(2007).The clathrate hydrate process for post and pre-combustion capture of carbon dioxide.Journal of hazardous materials, 149(3), 625-629. [11] Hoffmann, B.S., & Szklo, A.(2011).Integrated gasification combined cycle and carbon capture: a risky option to mitigate CO 2 emissions of coal-fired power plants.Applied Energy, 88(11), 3917-3929. [12] Schematic of Polygeneration Plant.U.S.Department of Energy (DOE). [13] Ruggiero, M., & Manfrida, G.(1999).An equilibrium model for biomass gasification processes.Renewable energy, 16(1), 1106-1109. [14] Chaudhari, S.T., Dalai, A.K., & Bakhshi, N.N.(2003).Production of hydrogen and/or syngas (H2+ CO) via steam gasification of biomass-derived chars.Energy & Fuels, 17(4), 1062-1067. [15] Smith, R.J., Loganathan, M., & Shantha, M.S.(2010).A review of the water gas shift reaction kinetics.International Journal of Chemical Reactor Engineering, 8(1). [16] Lund, C.R.(2002).Water-gas shift kinetics over iron oxide catalysts at membrane reactor conditions.Final Rep.Chem.Eng.Dep.Univ.Buffalo, 14260-14200. [17] Qi, X., & Flytzani-Stephanopoulos, M.(2004).Activity and stability of Cu-CeO2 catalysts in high-temperature water-gas shift for fuel-cell applications.Industrial & engineering chemistry research, 43(12), 3055-3062. [18] De la Osa, A.R., De Lucas, A., Valverde, J.L., Romero, A., Monteagudo, I., & Sánchez, P.(2011).Performance of a sulfur-resistant commercial WGS catalyst employing industrial coal-derived syngas feed.International Journal of Hydrogen Energy, 36(1), 44-51. [19] Haryanto, A., Fernando, S.D., To, S.F., Steele, P.H., Pordesimo, L., & Adhikari, S.(2009).Hydrogen Production through the Water− Gas Shift Reaction: Thermodynamic Equilibrium versus Experimental Results over Supported Ni Catalysts.Energy & Fuels, 23(6), 3097-3102. [20] Park, D., Duffy, G.J., Edwards, J.H., Roberts, D.G., Ilyushechkin, A., Morpeth, L.D., & Nguyen, T.(2009).Kinetics of high-temperature water-gas shift reaction over two iron-based commercial catalysts using simulated coal-derived syngases.Chemical Engineering Journal, 146(1), 148-154. [21] Park, D., Duffy, G.J., Edwards, J.H., Roberts, D.G., Ilyushechkin, A., Morpeth, L.D., & Nguyen, T.(2009).Kinetics of high-temperature water-gas shift reaction over two iron-based commercial catalysts using simulated coal-derived syngases.Chemical Engineering Journal, 146(1), 148-154. [22] van Dijk, H.A.J., Boon, J., Nyqvist, R.N., & Van Den Brink, R.W.(2010).Development of a single stage heat integrated water–gas shift reactor for fuel processing.Chemical Engineering Journal, 159(1), 182-189. [23] Kim, G.(1982).Ceria-promoted three-way catalysts for auto exhaust emission control.Industrial & Engineering Chemistry Product Research and Development, 21(2), 267-274. [24] Wheeler, C., Jhalani, A., Klein, E.J., Tummala, S., & Schmidt, L.D.(2004).The water–gas-shift reaction at short contact times.Journal of catalysis,223(1), 191-199. [25] Mendelovici, L., & Steinberg, M.(1985).Methanation and water-gas shift reactions over PtCeO2.Journal of Catalysis, 96(1), 285-287. [26] Bunluesin, T., Gorte, R.J., & Graham, G.W.(1998).Studies of the water-gas-shift reaction on ceria-supported Pt, Pd, and Rh: implications for oxygen-storage properties.Applied Catalysis B: Environmental, 15(1), 107-114. [27] Jacobs, G., Williams, L., Graham, U., Sparks, D., & Davis, B.H.(2003).Low-temperature water-gas shift: In-situ DRIFTS-reaction study of a Pt/CeO2 catalyst for fuel cell reformer applications.The Journal of Physical Chemistry B, 107(38), 10398-10404. [28] Haryanto, A., Fernando, S., & Adhikari, S.(2007).Ultrahigh temperature water gas shift catalysts to increase hydrogen yield from biomass gasification.Catalysis today, 129(3), 269-274. [29] Goerke, O., Pfeifer, P., & Schubert, K.(2004).Water gas shift reaction and selective oxidation of CO in microreactors.Applied Catalysis A: General,263(1), 11-18. [30] Wheeler, C., Jhalani, A., Klein, E.J., Tummala, S., & Schmidt, L.D.(2004).The water–gas-shift reaction at short contact times.Journal of catalysis,223(1), 191-199. [31] Luengnaruemitchai, A., Osuwan, S., & Gulari, E.(2003).Comparative studies of low-temperature water–gas shift reaction over Pt/CeO 2, Au/CeO 2, and Au/Fe 2 O 3 catalysts.Catalysis communications, 4(5), 215-221. [32] Panagiotopoulou, P., & Kondarides, D.I.(2004).Effect of morphological characteristics of TiO 2-supported noble metal catalysts on their activity for the water–gas shift reaction.Journal of catalysis, 225(2), 327-336. [33] Panagiotopoulou, P., & Kondarides, D.I.(2007).A comparative study of the water-gas shift activity of Pt catalysts supported on single (MO x) and composite (MO x/Al 2 O 3, MO x/TiO 2) metal oxide carriers.Catalysis Today,127(1), 319-329. [34] Radhakrishnan, R., Willigan, R.R., Dardas, Z., & Vanderspurt, T.H.(2006).Water gas shift activity of noble metals supported on ceria‐zirconia oxides.AIChE journal, 52(5), 1888-1894. [35] Willms, R.S., Wilhelm, R., & Konishi, S.(1995).Performance of a palladium membrane reactor using an Ni catalyst for fusion fuel impurities processing.Fusion engineering and design, 28, 397-405. [36] Chayakul, K., Srithanratana, T., & Hengrasmee, S.(2011).Catalytic activities of Re–Ni/CeO 2 bimetallic catalysts for water gas shift reaction.Catalysis Today, 175(1), 420-429. [37] Kugai, J., Velu, S., & Song, C.(2005).Low-temperature reforming of ethanol over CeO2-supported Ni-Rh bimetallic catalysts for hydrogen production.Catalysis Letters, 101(3-4), 255-264. [38] Caglayan, B.S., & Aksoylu, A.E.(2009).Water-gas shift reaction over bimetallic Pt–Ni/Al2O3 catalysts.Turk J Chem, 33, 249-256. [39] Murgia, S., Cau, G., & Mura, G.(2012).Experimental investigation and CFD numerical simulation of WGSR for hydrogen enrichment of high CO 2 content syngas from an air-blown updraft coal gasifier.Fuel, 101, 139-147. [40] Manrique, Y.J.A.(2012).Modeling and simulation of water-gas shift reactors: from conventional packed-bed to membrane reactors. [41] Rhodes, C., Hutchings, G.J., & Ward, A.M.(1995).Water-gas shift reaction: finding the mechanistic boundary.Catalysis Today, 23(1), 43-58. [42] In-Situ DRIFTS-Reaction Study of a Pt/CeO2 Catalyst for Fuel Cell Reformer Applications Jacobs, Gary; Williams, Leann; Graham, Uschi; Sparks, Dennis; Davis, Burtron H.Journal of Physical Chemistry B, 107(38), 10398-10404. [43] Bustamante, F., Enick, R.M., Killmeyer, R.P., Howard, B.H., Rothenberger, K.S., Cugini, A.V., ...& Ciocco, M.V.(2005).Uncatalyzed and wall‐catalyzed forward water–gas shift reaction kinetics.AIChE Journal, 51(5), 1440-1454. [44] Tibiletti, D., Goguet, A., Meunier, F.C., Breen, J.P., & Burch, R.(2004).On the importance of steady-state isotopic techniques for the investigation of the mechanism of the reverse water-gas-shift reaction.Chem.Commun., (14), 1636-1637. [45] Chen, H.T., Choi, Y., Liu, M., & Lin, M.C.(2007).A first-principles analysis for sulfur tolerance of CeO2 in solid oxide fuel cells.The Journal of Physical Chemistry C, 111(29), 11117-11122. [46] Galea, N.M., Kadantsev, E.S., & Ziegler, T.(2008).Modeling hydrogen sulfide adsorption on Mo-edge MoS2 surfaces under solid oxide fuel cell conditions.The Journal of Physical Chemistry C, 113(1), 193-203. [47] Sengupta, G., Roy, S.K., Kundu, M.L., & Sahay, R.N.(1994).Role of metal-support interaction in water gas shift reaction.Indian journal of chemical technology, 1, 297-297. [48] Campbell, C.T., & Daube, K.A.(1987).A surface science investigation of the water-gas shift reaction on Cu (111).Journal of Catalysis, 104(1), 109-119. [49] Smith, R.J., Loganathan, M., & Shantha, M.S.(2010).A review of the water gas shift reaction kinetics.International Journal of Chemical Reactor Engineering, 8(1). [50] Ovesen, C.V., Stoltze, P., N?rskov, J.K., & Campbell, C.T.(1992).A kinetic model of the water gas shift reaction.Journal of catalysis, 134(2), 445-468. [51] Wang, G., Jiang, L., Zhou, Y., Cai, Z., Pan, Y., Zhao, X., ...& Xie, K.(2003).Investigation of the kinetic properties for the forward and reverse WGS reaction by energetic analysis.Journal of Molecular Structure: THEOCHEM, 634(1), 23-30. [52] Rhodes, C., Hutchings, G.J., & Ward, A.M.(1995).Water-gas shift reaction: finding the mechanistic boundary.Catalysis Today, 23(1), 43-58. [53] Haruta, M.(2005).Catalysis: gold rush.Nature, 437(7062), 1098-1099. [54] Chang, L.P., Xie, Z.L., & Xie, K.C.(2006).Study on the Formation of NH 3 and HCN During the Gasification of Brown Coal in Steam.Process Safety and Environmental Protection, 84(6), 446-452. [55] Chen, Z., Yuan, S., Liang, Q., Wang, F., & Yu, Z.(2009).Distribution of HCN, NH 3, NO and N 2 in an entrained flow gasifier.Chemical Engineering Journal,148(2), 312-318. [56] XU, M.Y., CUI, Y.P., QIN, L.L., CHANG, L.P., & XIE, K.C.(2007).Key factors influencing the release and formation of HCN during pyrolysis of iron-containing coal.Journal of Fuel Chemistry and Technology, 35(1), 5-9. [57] Lin, J.Y., Zhang, S., Zhang, L., Min, Z., Tay, H., & Li, C.Z.(2010).HCN and NH3 formation during coal/char gasification in the presence of NO.Environmental science & technology, 44(10), 3719-3723.
摘要: 
In this study, monometallic and bimetallic catalysts (Pt, Ni, and Pt/Ni) supported on single or multiple oxides (Al2O3, TiO2, CeO2/Al2O3, and CeO2/TiO2) were prepared and tested in the catalytic water-gas shift reaction (WGSR) at ultra-high temperatures.The syngas (18%H2, 22%CO2, 30%CO, 30%N2) and steam with steam to carbon ratio of 1, 3, and 5 were used as the feedstock.The operation pressure was fixed as 1 atm while the reaction temperature was varied from 750 to 850℃.The measured results indicated that Ni/Al2O3 has the worst performance as compared with other catalysts.The reason for this result might be attributed to the poor ability of irreducible oxides on metal dispersion.Better WGSR performance can be resulted from bimetallic catalyst supported by multiple oxides.The best CO conversion and H2 yield obtained were 59.48% and 34.18%, respectively.Based on the measured results showing reduced N2 flow rate at reactor outlet, it is suspected that N2 reacts with H2 and deposited carbon to form ammonia (NH3) and hydrogen cyanide (HCN) and results in low H2 yield.

本研究分別以白金(Pt)、鎳(Ni)、白金-鎳(Pt/Ni)等單或雙金屬觸媒負載於Al2O3、TiO2、CeO2/Al2O3、以及CeO2/TiO2等單或雙載體,應用於超高溫下水氣轉換反應之催化。操作條件為使用合成氣 (18%H2, 22%CO2, 30%CO, 30%N2)為進料,水炭比為1、3、5,反應溫度為750、800、850℃,操作壓力為1 atm。實驗結果顯示,單金屬單載體觸媒Ni/Al2O3之表現,與其他觸媒載體組合比較,其性能最差,其原因可能為非還原性載體Al2O3之觸媒分散性較差。雙金屬雙載體觸媒具有較佳之表現,其原因可能為雙金屬觸媒所具有之協和效應,使其活性提升。最高之一氧化碳轉化率及產氫率分別為59.48%及34.18%。由量測數據顯示氮氣因其量減少,因此推測在高溫下氮氣亦參加反應。產氫率較低之原因,可能為氮氣在高溫下與氫氣反應產生氨氣以及積碳與氨氣產生氰化物之故。
URI: http://hdl.handle.net/11455/91337
Rights: 同意授權瀏覽/列印電子全文服務,2017-08-27起公開。
Appears in Collections:機械工程學系所

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-104-7102061038-1.pdf3.31 MBAdobe PDFThis file is only available in the university internal network   
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.