Please use this identifier to cite or link to this item:
http://hdl.handle.net/11455/91343
標題: | Quantum dots/Silicon nanowire Coaxial
Photoelectrode based Dye Sensitized Solar Cells 量子點/矽奈米線同軸光電極之 染料敏化太陽能電池 |
作者: | 謝侑達 You-Da Hsieh |
關鍵字: | Quantum dots;Sb2S3;silicon nanorod array;coaxial nanorod array photoelectrode;dye-sensitized solar cells;量子點;Sb2S3;矽奈米線陣列;同軸光電極;染料敏化太陽 能電池 | 引用: | [1] K. O. Ott , 'Global warming and the greenhouse effect,' Progress in Nuclear Energy, 29, 81, 1995 [2] L. L. Kazmerski, 'Photovoltaics: a review of cell and module technologies,' Renewable and Sustainable Energy Reviews,71-170,1997 [3] P. V. Kamat, J. Phys. 'Chem, Meeting the Clean Energy Demand:Nanostructure Architectures for Solar Energy Conversion', 111, 2834,2007 [4] D . Schmid , M. Ruckh , F. Grunwald , H. W. Schock , 'Transparent Conductive Zinc Oxide', Appl. Phys. Lett, 111, 2834, 2007 [5] J. I. , Pankove , Ed. , 'Optical processes in semiconductors', 2012 [6] D. M. Chapin, C. S. Fuller, Pearson, 'Synthesis and Characterization of Rubrene Derivatives and their Applications on Dye Sensitized Solar Cell', Appl. Phys. ,51, 676, 1954 [7] P. Meyers, V. Albright, Photovolt, Res. Appl. , 8, 161, 2000 [8] H. Schock, W.; Noufi, R. Prog. Photovolt., 'CIGS-based Solar Cells for the Next Millennium', Res. Appl. , 8, 151, 2000 [9] N. Beaumont,I. Hancox, P. Sullivan, R. A. Hatton, T. S. Jones,'Increased efficiency in small molecule organic photovoltaic cells through electrode modification with self-assembled monolayers',Energy Environ. Sci. , 4, 1708, 2011 [10] M. Gratzel, 'Investigation on New CuInS2/Carbon Composite Counter Electrodes for CdS/CdSe Co sensitized Solar Cells', Acc.Chem. Res. , 42, 1288, 2009 [11] A. E. Becquerel, 'Memoire sur les effets electriques produits sous l'inuence des rayons solaires,' Comptes Rendus des Seances Hebdomadaires, vol. 9, pp. 561-567, 1839 [12] M. Gratzel, 'Photoelectrochemical cells,' Nature, Vol. 414, pp.338-344, 2001 [13] H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, Nature 261, 402, 1976 [14] B. O'Regan and M. Gratzel, 'A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,' Nature, Vol. 353, pp.737-740, 1991 [15] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker,E.Mueller, P. Liska, N. Vlachopoulos, and M. Graetzel, 'Conversion oflight to electricity by cis-X2 bis on nanocrystalline titanium dioxide electrodes,' Journal of the American Chemical Society, Vol.115, pp. 6382-6390,1993 [16] A. Kay, M. Grtzel, 'Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder,'Solar Energy Materials and Solar Cells, Vol. 44, pp. 99-117, 1996 [17] C. J. Barbe', F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V.Shklover, M. Grtzel 'Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications,' Journal of the American Ceramic Society, Vol. 80, pp. 3157-3171, 1997 [18] M. Gratzel, 'Photoelectrochemical cells,' Nature, Vol. 414, pp.338-344, 2001 [19] P. Pechy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P.Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B.Deacon, C. A. Bignozzi, and M. Gratzel, 'Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells,' Journal of the American Chemical Society, Vol. 123, pp. 1613-1624, 2001 [20] M. Gratzel, 'Dye-sensitized solar cells,' Journal of Photochemistry and Photobiology C: Photochemistry Reviews, Vol. 4, pp. 145-153,2003 [21] Marke´ta Zukalova´,Arnosˇt Zukal, Ladislav Kavan,Mohammad K.Nazeeruddin, Paul Liska, and Michael Gra1tzel, 'Organized Mesoporous TiO2 Films Exhibiting Greatly Enhanced Performance in Dye-Sensitized Solar Cells', Received July 20, 2005 [22] C.H.Chang, Y.L.Lee, 'Chemical bath deposition of CdS quantum dots onto mesoscopic TiO2 films for application in quantum-dot-sensitized solar cells', Applied Physics Letters 91,053503, 2007 [23] D. R. Baker, P. V. Kamat, 'Photosensitization of TiO2 Nanostructures with CdS Quantum Dots: Particulate versus Tubular Support Architectures', Advanced Functional Materials 19, 805,2009 [24] Y. L. Lee, and Y. S. Lo, 'Highly Efficient Quantum-Dot-Sensitized Solar Cell Based on Co-Sensitization of CdS/CdSe', Advanced Function Materials 19,604, 2009 [25] A Tubtimtae, K. L. Wua, H. Y. Tung, M. W. Lee, G. J. Wang,'AgBiS2 Semiconductor-Sensitized Solar Cells', Electrochemistry Communications 12,1158, 2010 [26] A. Tubtimtae, M. W. Lee, G. J. Wang, 'Ag2Se quantum-dot sensitized solar cells for full solar spectrum light harvesting', Journal of Power Sources 196, 6603, 2011 [27] J. H. Im, C. R. Lee, J. W. Lee, S. W. Park, and N. G. Park, '6.5% efficient perovskite quantum-dot-sensitized solar cell', Nanoscale 3,4088, 2011 [28] A. Tubtimtae, M. W. Lee, 'Effects of passivation treatment on performance of CdS/CdSe quantum-dot co-sensitized solar cells',Thin Solid Films 526,225, 2012 [29] S. H. Im, C. S. Lim, J. A. Chang, Y. H. Lee, N. Maiti, H. J. Kim, Md.K. Nazeeruddin, M. Gratzel, S. I. Seok, 'Toward Interaction of Sensitizer and Functional Moieties in Hole-Transporting Materials for Efficient Semiconductor-Sensitized Solar Cells', Nano Letters 11, 4789, 2011 [30] Albert Einstein, Wikisource, 'On a Heuristic Point of View about the Creation and Conversion of Light', 1905 [31] Michael. Gratzel , Nature ,' Photoelectrochemical cells', 414 ,338-344, 2001 [32] J. Phys. Chem. B 'Nature of Photovoltaic Action in Dye-Sensitized Solar Cells', 104, 2053-2059, 2000 [33] 陳佳靜, 氧化鋅奈米顆粒與奈米柱於染料敏化太陽能電池之應用, 2008 [34] AERODISP, fumed titanium dioxide dispersion for production of dye-sensitized solar cells [35] Md. K. Nazeeruddin, R. Humphry-Baker, P. Liska, and M. Gra1tzel,J. 'Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications', Phys. Chem. B, 8981-8987, 2003 [36] C. J. Barbe', F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V.Shklover, M. Grtzel, 'Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications,' Journal of the American Ceramic Society, Vol. 80, pp. 3157-3171, 1997 [37] Anders Hagfeldt & Michael Grätzel, 'Molecular Photovoltaics',Acc. Chem. Res, 33, 269-277 , 2000 [38] X. F. Gao, H. B. Li, W. T. Sun, Q. Chen, F. Q. Tang and L. M. Peng,'Transforming Carbon Nanotubes to Few-Layer Graphene with the Assistance of Encapsulated Ferrocene', The Journal of Physical Chemistry C,113,7531-7535, 2009 [39] G. Wolfbauer, A. M. Bond, J. C. Eklund and D.R. MacFarlane, 'A channel ow cell system speci cally designed to test the eciency of redox shuttles in dye sensitized solar cells', Solar Energy Materials & Solar Cells, 70, 85-101, 2001 [40] Mingkui Wang, Carole Gratzel, Shaik M. Zakeeruddin, Michael Gratzel, 'Recent developments in redox electrolytes for dye-sensitized solar cells', Energy & Environmental Science,5,9394-9405, 2012 [41] 馮垛生, 太陽能發電原理與應用: 五南圖書出版股份有限公司, 2009. [42] 莊嘉琛, 太陽能工程 (太陽電池篇): 全華科技圖書股份有限公司, 2008. [43] 林明獻, 太陽電池技術入門: 全華圖書股份有限公司, 2008 [44] C Jackson Stolle, Taylor B Harvey and Brian A Korgel,'Nanocrystal photovoltaics: a review of recent progress', Current Opinion in Chemical Engineering,2,160-167, 2013 [45] W. William Yu and Xiaogang Peng, 'Formation of High-Quality CdS and Other II ±VI Semiconductor Nanocrystals in Noncoordinating Solvents: T unable Reactivity of Monomers,Angew. Chem. Int. Ed. No. 13, 1433-7851, 2002 [46] W. W. Yu, L. Q. W. Guo and X. Peng, 'Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals'Chem. Mater. 15, 2854, 2003 [47] R. He, X. Qian, J. Yin, H. Xi, L. Bian and Z. Zhu, 'Formation of monodispersed PVP-capped ZnS and CdS nanocrystals under microwave irradiation' Colloids and Surfaces A: Physicochem. Eng.Aspects 220, 151, 2003 [48] Y. Wang and N. Herron, 'Nanometer-Sized Semiconductor Clusters:Materials Synthesis, Quantum Size Effects, and Photophysical Properties', Central Research and Development Department,19880-0356, 1990 [49] H.K. Jun, M.A. Careem, A.K. 'Quantum dot-sensitized solar cells—perspective and recent developments: A review of Cd chalc o genide quantum dots as sensitizers', Arof, Renewable and Sustainable Energy Reviews,22,148-167, 2013 [50] A. J. Nozik, 'Quantum dot solar cells' Physica E 14, 115, 2002 [51] L. C. Moreno, J. W. Sandino, N. hernandez and G. gordillo, 'pH Effect on the Deposition of CdS on ZnO and SnO2:F Substrates by CBD Method', phys. Stat. Sol., Vol.220, pp.289-292,2000 [52] P. O'Brien and J. McAleese, 'Developing an understanding of the processescontrolling the chemical bath deposition of ZnS and CdS',J.Mater. Chem, Vol.8, pp.2309-2314, 1998 [53] 巫文全、王文軒、駱榮富,化學浴沉積法中添加不同錯合物前驅物對製備硫化鋅薄膜與其性質之影響,逢甲大學材料與科學工程學系, 2008 [54] R.S. Mane, C.D. Lokhande, 'Chemical deposition method for metal chalcogenide thin flms', Materials Chemistry and Physics, 65, 1-31,2000 [55] C.D. Lokhande, Materials Chemistry and Physics, 27, 1-43, 1991 [56] 王毓國、陳錦山、駱榮富,中華民國陶業研究學會年會論文集, PP 26, 2007 [57] T. P. Niesen and M. R. D. Guire, 'Review:Deposition of ceramic thin films at low temperatures from aqueous solutions', Journal of Electroceramics,Vol.6, pp.169-207, 2001 [58] H. Y. Xu, S. L. Xu, X. D. Li, H. Wang and H. Yan, 'Chemical bath deposition of hausmannite Mn3O4 thin films', Applied Surface Science, Vol.252, pp.4091-4096,2006 [59] M. O. Lopez, A. A. Garcia, M. L. A. Aguilera and V. M. S.Resendiz,'Improved efficiency of the chemical bath deposition method during growth of ZnO thin films', Materials Research Bulletin, Vol.38,pp.1241-1248, 2003 [60] Malinowska. B., Rakib, M., Durand, G., 'Ammonia recycling and cadmium confinement in chemical bath deposition of CdS thin layers.' Progress in Photovoltaics: Research and Applications Vol.9(5 ), pp.389 – 404, 2001 [61] P.K. Nair, M. T. S. N., V.M. Garcia, O.L. Arenas, Y. Pena,A.Castillo, I.T. Ayala, O.Gomezdaza, A. Sanchez, J. Campos, and R.S.H. Hu, M.E. Rincon, 'Semiconductor thin films by chemical bath deposition for solar energy related applications', Solar Energy Materials and Solar Cells, 313-344, 52, 1998 [62] H. Morinaga, M. Suyama, and T. Ohmi, 'Mechanism of Metallic Particle Growth and Metal Induced Pitting on Si Wafer Surface in Wet Chemical Processing,' Journal of The Electrochemical Society,vol. 141, pp. 2834-2841, October 1, 1994 [63] J. S. Kim, H. Morita, J. D. Joo, and T. Ohmi, 'The Role of Metal Induced Oxidation for Copper Deposition on Silicon Surface,'Journal of The Electrochemical Society, vol. 144, pp. 3275-3283,September 1, 1997. [64] K. Peng and J. Zhu, 'Morphological selection of electroless metal deposits on silicon in aqueous fluoride solution,' Electrochimica Acta,vol. 49, pp. 2563-2568, 2004 [65] 林麗娟, 工業材料 86, 1994 [66] S. Lee, J. H. Noh, S. T. Bae, I. S. Cho, J. Y. Kim, H. Shin, J. K. Lee,H. S. Jung, and K. S. Hong, 'Indium Tin Oxide-Based Transparent Conducting Layers for Highly Efficient Photovoltaic Devices,' The Journal of Physical Chemistry C, Vol. 113, pp. 7443-7447, 2009 [67] S. Lee, J. H. Noh, S. T. Bae, I. S. Cho, J. Y. Kim, H. Shin, J. K. Lee,H. S. Jung, and K. S. Hong, 'Indium Tin Oxide-Based Transparent Conducting Layers for Highly Efficient Photovoltaic Devices,' The Journal of Physical Chemistry C, Vol. 113, pp. 7443-7447, 2009 [68] C.A Gueymard, D. Myers, K. Emery, 'Proposed Reference Irradiance Spectra for Solar Energy Systems Testing', Solar Energy 73, 443-467, 2002 [69] Longo, C.; Nogueira, A. F.; Paoli, M. A. D. J. 'Solid-State and Flexible Dye-Sensitized TiO2 Solar Cells: a Study by Electrochemical Impedance Spectroscopy', Phys. Chem. B 106,5925,2002 | 摘要: | In this study, we propose a novel dye-sensitized solar cells (DSSC)structure. In this new structure, the quantum dot/semiconductor silicon coaxial nanorod array is employed to replace the conventional dye/TiO2/TCO photoelectronde. Top-side illumination is adopted to replace the backlight input mode. The quantum dot is used to replace dye as the light-absorbing material. The photon excited photoelectrons can be effectively transported to each silicon nanorod then conveyed to the counter electrode. The two-stage metal assisted etching (MAE) is adopted for the fabrication of the micro/nano hybrid structure on a silicon substrate. The chemical bath deposition (CBD) method is then used to synthesize Sb2S3 quantum dot on the surface of each silicon nanorod, forming the photoelectrode of quantum dot/semiconductor silicon (QD/Si) coaxial nanorod array. The synthesized QD/Si coaxial nanorod arrays are characterized suing field emission scanning electron microscope(FE-SEM), X ray spectrometer scattered energy (EDS), X-ray diffraction analyzer (XRD), and transmission electron microscopy (TEM). A xenon lamp is used to simulate the AM 1.5 G (1000 W/m2) sunlight. The influence of different silicon nanorod array and CBD depositing times on the photoelectric conversion efficiency is investigated. When a NH (N-type with high resistance) silicon substrate is used,the QD/Si coaxial nanorod array synthesized by three runs of Sb2S3 deposition illustrates the highest photoelectric conversion efficiency of 0.253 %. The corresponding short-circuit current density, open-circuit voltage, and fill factor are 5.19 mA/cm2, 0.24 V, and 20.33%,respectively. 本論文本研究提出新式之染料敏化太陽能電池(DSSC)結構,以正向照光之方式取代傳統之背光輸入模式,其優點為不需背面透光故可使用非透明之光電極,並以量子點/矽奈米線半導體材料之同軸光電極解決傳統之TCO導電玻璃經過高溫燒結後電阻增大的問題,提昇電子-電洞分離效果與光電轉換效能。而以半導體材料為光電極亦有適合大面積生產之優點。 本論文主要是以化合物半導體量子點Sb2S3取代染料敏化太陽電池中的染料做為吸光材料。本研究採用金屬輔助蝕刻法之兩階段蝕刻,製備出微奈米複合結構之矽奈米線陣列,以化學浴沉積法(CBD)在矽奈米線陣列結構中沉積量子點,經過退火成功的將化合物半導體量子點合成於奈米孔洞內,發展出量子點/矽奈米線之同軸光電極;並利用場發射掃描電子顯微鏡(FE-SEM)、X光能量散譜儀(EDS)、X-ray繞射儀分析儀(XRD)與穿透式電子顯微鏡(TEM)分析,所合成之同軸光電極的結構形貌、成份含量、結晶型態與晶格方向。而太陽電池的性能方面是使用氙燈模擬AM 1.5 G (1000 W/m2)的太陽光量測轉換效率,探討不同矽基板之矽奈米線陣列結構與不同化學浴沉積次數對效率的影響。 在NH矽基板之矽奈米線陣列中,Sb2S3沉積3次所合成的量子點/矽奈米線之同軸光電極,可有最高的光電轉換效率,轉換效率為0.253% 、短路電流密度5.19 mA/cm2、開路電壓0.24 V、填充因子20.33 %。 |
URI: | http://hdl.handle.net/11455/91343 | Rights: | 同意授權瀏覽/列印電子全文服務,2018-05-11起公開。 |
Appears in Collections: | 機械工程學系所 |
Files in This Item:
File | Size | Format | Existing users please Login |
---|---|---|---|
nchu-103-7101061511-1.pdf | 7.44 MB | Adobe PDF | This file is only available in the university internal network |
TAIR Related Article
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.