Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91361
標題: Experimental Study on Hydrogen Production via Water-gas Shift Reaction using Blast Furnace gas (BFG)
以煉鐵廠高爐氣經由水氣轉化反應產氫之實驗探討
作者: 蘇俊嘉
Chun-Chia Su
關鍵字: blast furnace gas (BFG);water-gas shift reaction (WGSR);Pt-Ni catalyst;CO conversion;H2 production;高爐氣;氣轉化反應;Pt-Ni觸媒;CO轉化率;產氫
引用: 【1】 饒文濤,鋼鐵廠節能溫室氣體減排現狀及對策,寶鋼技術期刊vol.3,2008。 【2】 何金巡、林建甫、周齊,二氧化碳減量的總體經濟計量分析,全國實證經濟學論文研討會,2008。 【3】 國家節能減碳總計劃,行政院節能推動委員會,2010。 【4】 能源產業技術白皮書,經濟部能源局,2012。 【5】 100年能源供需統計年報,經濟部能源局,2011。 【6】 楊光漢、許介演、龍海蒂、陳建華、詹益亮,鋼鐵業能源效率與節能錯施, 工研院率能與環境研究所,2012。 【7】 葉肇聖,中鋼公司節能減碳之管理與作法,2008。 【8】 曲新生、陳發林、呂錫民,產氫與儲氫技術,五南圖書出版股份有限公司,台北市,中華民國,2007。 【9】 徐恆文,煤炭氣化發電之能源優勢,工業技術研究院,2004。 【10】蕭輝煌,中鋼能源管理簡介,中鋼公司公用設施處,1999。 【11】 歐正章,一貫作業鋼廠能源管理,中鋼公司能源環境事務推動小組,2012。 【12】 Wang C, Ryman C, Dahl J. Potential CO2 emission reduction for BF-BOF steelmaking based on optimized use of ferrous burden materials. International Journal of Greenhouse Gas Control 2009;3:29-38. 【13】 何忠根,高爐煉鐵製程,鋼鋁研究發展處,中鋼公司,2001。 【14】 陳志軒,煉鋼製程氣混燒之節能利用,國立成功大學機械工程學系碩士論文,2009。 【15】能源產品單位熱值統計,經濟部能源局,2012。 【16】Mendes D, Chibante V, Zheng JM, Tosti S, Borgognoni F, Madeira LM. Enhancing the production of hydrogen via wateregas shift reaction using Pd-based membrane reactors. International Journal of Hydrogen Energy 2010;35:12596-12608. 【17】徐恆文,我國碳捕集技術介紹與展望,工業技術研究院綠能與環境研究所,2011。 【18】歐正章、汪上曉、鄭西顯,自熱風爐煙囪捕捉二氧化碳先導設備建立與效能改善分析,中鋼公司能源環境事務推動辦公室、國立清華大學化工系,海峽兩岸氣候變遷與能源永續發展論壇,2011。 【19】Chen WH, Lin MU, Leu TS, Du SW. Hydrogen production from steam reforming of coke oven gas and its utility for indirect reduction of iron oxides in blast furnace. International Journal of Hydrogen Energy 2012; 37:748-758. 【20】Chen WH, Lin MU, Leu TS, Du SW. An evaluation of hydrogen production from the perspective of using blast furnace gas and coke oven gas as feedstocks. International Journal of Hydrogen Energy 2011; 36:727-732. 【21】Haryanto A, Fernando S, Adhikari S. Ultrahigh temperature water gas shift catalysts to increase hydrogen yield from biomass gasification. Catalysis Today 2007; 129:269-274. 【22】Sun Y, Hla SS, Duffy GJ, Cousins AJ, French D, Morpeth LD, Edwards JH, Roberts DG. High temperature water-gas shift Cu catalysts supported on Ce-Al containing materials for the production of hydrogen using simulated coal-derived syngas. Catalysis Communications 2010; 12:304-309. 【23】Panagiotopoulou P, Kondarides DI. A comparative study of the water-gas shift activity of Pt catalysts supported on single and composite metal oxide carriers. Catalysis Today 2007; 127:319-329. 【24】林筵翔,超高溫水氣轉化反應觸媒與膜反應器合成氣產氫之實驗探討,國立中興大學機械工程學系碩士論文,2013。 【25】Manrique YA, Miguel CV, Mendes D, Mendes A, Madeira LM. Modeling and simulation of a packed-bed reactor for carryinf out the water-gas shift reaction. International Journal of Chemical Reactor engineering 2012; 10:4-5. 【26】Smith RJB, Loganathan M, Shantha MS. A review of the water gas shift reaction kinetics. International Journal of Chemical Reactor Engineering 2010;8:R4. 【27】Lee JY, Lee DW, Hong YK, Lee KY. The CO removal performances of Cr - Fe/Ni catalysts for high temperature WGSR under LNG reformat condiction without additional steam. International Journal of Hydrogen Energy 2011; 36:8173-8180. 【28】Chen WH, Lin MR, Jiang TL, Chen MH. Modeling and simulation of high-temperature and low-temperature water gas shift reactions. International Journal of Hydrogen Energy 2008;33:6644-56. 【29】Chu M, Nogami H, Yagi I. Numerical analysis on blast furnace performance under operation with top gas recycling and carbon composite agglomerates charging. ISIJ International 2004;44:2159-67.
摘要: 
Based on the integrated gasification combined cycle (IGCC) technology, hydrogen production via water-gas shift reaction (WGSR) using blast furnace gas (BFG) of ironworks as feedstock was experimentally investigated in this study. The reaction temperature and steam to carbon (S/C) ratio were in the ranges of 300~500°C and 1~5, respectively. The prepared 2.5wt%Pt-2.5wt%Ni/5wt%CeO2/Al2O3 catalyst was used in the WGSR experiment and its performance was compared with the commercial Fe-Cr catalyst. The results indicated that the maximum CO conversion can be found at the reaction temperature of 450°C and S/C=5 for both catalysts. Under these operation conditions, the maximum CO conversion for the Pt-Ni catalyst was 87.1% which was slightly lower than 89.3% resulted from Fe-Cr catalyst. Based on the experimental results obtained from this study, it is feasible to employ WGSR for hydrogen production from BFG. The H2 concentration can be rasied to above 27% while CO concentration was reduced to 3%. The heating value of BFG can be increased from 777 kcal/Nm3 to 941.5 kcal/Nm3 via WGSR.

本研究參考氣化式複循環發電技術,藉由高溫水氣轉化反應,將煉鐵廠高爐氣轉化產氫,同時可提升其熱值並作為燃氣,達到節省能耗之目的。實驗反應溫度為350~500℃,透過改變不同的進料水碳比與長時間的操作觀察自製Pt-Ni觸媒與商用Fe-Cr觸媒的一氧化碳轉化效果、氫氣產率與熱穩定性等性能表現。研究首先以自製2.5wt%Pt-2.5wt%Ni/5wt%CeO2/Al2O3觸媒進行測試,並以商用Fe-Cr觸媒進行相同測試並做為比較基準。實驗結果以商用Fe-Cr觸媒進行水氣轉化反應,在操作溫度450℃及進料水碳莫耳比S/C = 5時有最佳的CO轉化率,平均為89.3%,而自製2.5wt%Pt-2.5wt%Ni/5wt%CeO2/Al2O3觸媒則於操作溫度450℃及進料水碳比為5時有最佳的CO轉化率,平均為87.1%。由實驗結果得知,確實可利用WGSR將高爐氣轉化產氫,有效提升其H2含量至27%以上,CO含量降至3%以下。經由估算後,可將高爐氣之熱值自777 kcal/ Nm3提升至941.5 kcal/ Nm3左右,並可再加以利用於高爐生產製程中做為熱風爐燃氣之用,達到節省能耗及提升燃燒效率之目的。
URI: http://hdl.handle.net/11455/91361
Rights: 不同意授權瀏覽/列印電子全文服務
Appears in Collections:機械工程學系所

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-103-5098061020-1.pdf2.61 MBAdobe PDFThis file is only available in the university internal network   
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.