Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributorGou-Jen Wangen_US
dc.contributor.authorChe-Wei Hsuen_US
dc.identifier.citation[1] B. Y. Kim, J. T. Rutka, and W. C. Chan, 'Nanomedicine,' New England Journal of Medicine, vol. 363, pp. 2434-2443, 2010. [2] R. Subbiah, M. Veerapandian, and K. S Yun, 'Nanoparticles: functionalization and multifunctional applications in biomedical sciences,' Current medicinal chemistry, vol. 17, pp. 4559-4577, 2010. [3] B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, 'New approaches to nanofabrication: molding, printing, and other techniques,' Chemical reviews, vol. 105, pp. 1171-1196, 2005. [4] B. K. Teo and X. Sun, 'From top-down to bottom-up to hybrid nanotechnologies: road to nanodevices,' Journal of Cluster Science, vol. 17, pp. 529-540, 2006. [5] S. Ferlay, T. Mallah, R. Ouahes, P. Veillet, and M. Verdaguer, 'A room- temperature organometallic magnet based on Prussian blue,' Nature, vol. 378, pp. 701-703, 1995. [6] G. Cao and D. Liu, 'Template-based synthesis of nanorod, nanowire, and nanotube arrays,' Advances in colloid and interface science, vol. 136, pp. 45- 64, 2008. [7] G.-J. Wang and H.-T. Chen, 'Fabrication of 3D nano-structured ITO films by RF magnetron sputtering,' Current Nanoscience, vol. 5, pp. 297-301, 2009. [8] Y. Li, N. Koshizaki, and W. Cai, 'Periodic one-dimensional nanostructured arrays based on colloidal templates, applications, and devices,' Coordination Chemistry Reviews, vol. 255, pp. 357-373, 2011. [9] O. V. Kononenko, A. N. Redkin, A. N. Baranov, G. N. Panin, A. A. Kovalenko, and A. A. Firsov, 'ZnO Nanorods: Synthesis by Catalyst-Free CVD and Thermal Growth from Salt Composites and Application to Nanodevices,' Nanorods, Nanotechnology and Nanomaterials, pp. 51-74, 2012. [10] H. Wan and H. E. Ruda, 'A study of the growth mechanism of CVD-grown ZnO nanowires,' Journal of Materials Science: Materials in Electronics, vol. 21, pp. 1014-1019, 2010. [11] K. Khun, Z. H. Ibupoto, M. S. AlSalhi, M. Atif, A. A. Ansari, and M. Willander, 'Fabrication of Well-Aligned ZnO Nanorods Using a Composite Seed Layer of ZnO Nanoparticles and Chitosan Polymer,' Materials, vol. 6, pp. 4361-4374, 2013. [12] S. K. Pradhan, P. J. Reucroft, F. Yang, and A. Dozier, 'Growth of TiO< sub> 2</sub> nanorods by metalorganic chemical vapor deposition,' Journal of crystal growth, vol. 256, pp. 83-88, 2003. [13]R. Furneaux, W. Rigby, and A. Davidson, 'The formation of controlled- porosity membranes from anodically oxidized aluminium,' Nature, vol. 337, pp. 147-149, 1989. [14]R. L. Fleischer, P. B. Price, and R. M. Walker, Nuclear tracks in solids: principles and applications: Univ of California Press, 1975. [15]P. Enzel, J. J. Zoller, and T. Bein, 'Intrazeolite assembly and pyrolysis of polyacrylonitrile,' J. Chem. Soc., Chem. Commun., pp. 633-635, 1992. [16]C.-G. Wu and T. Bein, 'Conducting carbon wires in ordered, nanometer-sized channels,' Science, pp. 1013-1015, 1994. [17]R. J. Tonucci, B. L. Justus, A. J. Campillo, and C. E. Ford, 'Ngnochannel array glass,' Science (New York, N.Y.), vol. 258, pp. 783-785, 1992 Oct 30 1992. [18]G. E. Possin, 'A Method for Forming Very Small Diameter Wires,' Review of Scientific Instruments, vol. 41, pp. 772-774, 1970. [19]S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and H. Dai, 'Self-oriented regular arrays of carbon nanotubes and their field emission properties,' Science, vol. 283, pp. 512-514, 1999. [20]C. Guerret-Piecourt, Y. Le Bouar, A. Lolseau, and H. Pascard, 'Relation between metal electronic structure and morphology of metal compounds inside carbon nanotubes,' Nature, vol. 372, pp. 761-765, 1994. [21]P. Ajayan, O. Stephan, P. Redlich, and C. Colliex, 'Carbon nanotubes as removable templates for metal oxide nanocomposites and nanostructures,' 1995. [22]K. Nielsch, F. Müller, A.-P. Li, and U. Gösele, 'Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition,' Advanced Materials, vol. 12, pp. 582-586, 2000. [23]J.-M. Moon and A. Wei, 'Uniform gold nanorod arrays from polyethylenimine-coated alumina templates,' The Journal of Physical Chemistry B, vol. 109, pp. 23336-23341, 2005. [24]G. Meng, A. Cao, J.-Y. Cheng, A. Vijayaraghavan, Y. J. Jung, M. Shima, et al., 'Ordered Ni nanowire tip arrays sticking out of the anodic aluminum oxide template,' Journal of applied physics, vol. 97, p. 064303, 2005. [25]V. Anandan, Y. L. Rao, and G. Zhang, 'Nanopillar array structures for enhancing biosensing performance,' International journal of nanomedicine, vol. 1, pp. 73-79, 2006. [26] S.-J. Lee, V. Anandan, and G. Zhang, 'Electrochemical fabrication and evaluation of highly sensitive nanorod-modified electrodes for a biotin/avidin system,' Biosensors and Bioelectronics, vol. 23, pp. 1117-1124, 2008. [27] J.-N. Chazalviel, R. Wehrspohn, and F. Ozanam, 'Electrochemical preparation of porous semiconductors: from phenomenology to understanding,' Materials Science and Engineering: B, vol. 69, pp. 1-10, 2000. [28] S. Langa, I. Tiginyanu, J. Carstensen, M. Christophersen, and H. Föll, 'Formation of Porous Layers with Different Morphologies during Anodic Etching of nInP,' Electrochemical and Solid-State Letters, vol. 3, pp. 514-516, 2000. [29] C. Kresge, M. Leonowicz, W. Roth, J. Vartuli, and J. Beck, 'Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism,' nature, vol. 359, pp. 710-712, 1992. [30] F. Li, L. Zhang, and R. M. Metzger, 'On the growth of highly ordered pores in anodized aluminum oxide,' Chemistry of materials, vol. 10, pp. 2470-2480, 1998. [31] H. Masuda, F. Hasegwa, and S. Ono, 'SelfOrdering of Cell Arrangement of Anodic Porous Alumina Formed in Sulfuric Acid Solution,' Journal of the electrochemical society, vol. 144, pp. L127-L130, 1997. [32]G. Thompson, 'Porous anodic alumina: fabrication, characterization and applications,' Thin solid films, vol. 297, pp. 192-201, 1997. [33]G. Thompson, R. Furneaux, G. Wood, J. Richardson, and J. Goode, 'Nucleation and growth of porous anodic films on aluminium,' 1978. [34]O. Jessensky, F. Müller, and U. Gösele, 'Self-organized formation of hexagonal pore arrays in anodic alumina,' Applied Physics Letters, vol. 72, pp. 1173-1175, 1998. [35]H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao, and T. Tamamura, 'Highly ordered nanochannel-array architecture in anodic alumina,' Applied Physics Letters, vol. 71, pp. 2770-2772, 1997. [36]A. Li, F. Müller, A. Birner, K. Nielsch, and U. Gösele, 'Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina,' Journal of Applied Physics, vol. 84, pp. 6023-6026, 1998. [37]H. Masuda and K. Fukuda, 'Ordered metal nanohole arrays made by a two- step replication of honeycomb structures of anodic alumina,' Science, vol. 268, pp. 1466-1468, 1995. [38] H. Masuda, K. Yada, and A. Osaka, 'Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution,' Japanese Journal of Applied Physics, vol. 37, p. L1340, 1998. [39]A. Li, F. Müller, A. Birner, K. Nielsch, and U. Gösele, 'Polycrystalline nanopore arrays with hexagonal ordering on aluminum,' Journal of Vacuum Science & Technology A, vol. 17, pp. 1428-1431, 1999. [40]C. Zaragoza, S. Márquez, and M. Saura, 'Endothelial mechanosensors of shear stress as regulators of atherogenesis,' Current opinion in lipidology, vol. 23, pp. 446-452, 2012. [41]J. Goldstein, D. E. Newbury, D. C. Joy, C. E. Lyman, P. Echlin, E. Lifshin, et al., Scanning electron microscopy and X-ray microanalysis: Springer, 2003. [42]C. Gaucher, C. Devaux, C. Boura, P. Lacolley, J.-F. Stoltz, and P. Menu, 'In vitro impact of physiological shear stress on endothelial cells gene expression profile,' Clinical hemorheology and microcirculation, vol. 37, pp. 99-107, 2007. [43]C.-W. Li and G.-J. Wang, 'A material-independent cell–environment niche based on microreciprocating motion for cell growth enhancement,' Biofabrication, vol. 5, p. 045001, 2013. [44]J. L. Tan, J. Tien, D. M. Pirone, D. S. Gray, K. Bhadriraju, and C. S. Chen, 'Cells lying on a bed of microneedles: an approach to isolate mechanical force,' Proceedings of the National Academy of Sciences, vol. 100, pp. 1484- 1489, 2003. [45]G. Danaei, M. M. Finucane, Y. Lu, G. M. Singh, M. J. Cowan, C. J. Paciorek, et al., 'National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2· 7 million participants,' The Lancet, vol. 378, pp. 31-40, 2011. [46]J. Wang, 'Electrochemical glucose biosensors,' Chemical reviews, vol. 108, pp. 814-825, 2008. [47]A. P. Turner, B. Chen, and S. A. Piletsky, 'In vitro diagnostics in diabetes: meeting the challenge,' Clinical chemistry, vol. 45, pp. 1596-1601, 1999. [48]D. Muller, 'Oxidation von Glukose mit Extrakten aus Aspegillus niger,' Biochemische zeitschrift, vol. 199, pp. 136-170, 1928. [49]L. C. Clark and C. Lyons, 'Electrode systems for continuous monitoring in cardiovascular surgery,' Annals of the New York Academy of sciences, vol. 102, pp. 29-45, 1962. [50]G. Davis, I. J. Higgins, H. A. Hill, and J. M. McCann, 'Strip Electrode including screen printing of a single layer,' ed: Google Patents, 1996. [51] R. Nagata, K. Yokoyama, S. A. Clark, and I. Karube, 'A glucose sensor fabricated by the screen printing technique,' Biosensors and Bioelectronics, vol. 10, pp. 261-267, 1995. [52] E. Crouch, D. C. Cowell, S. Hoskins, R. W. Pittson, and J. P. Hart, 'A novel, disposable, screen-printed amperometric biosensor for glucose in serum fabricated using a water-based carbon ink,' Biosensors and Bioelectronics, vol. 21, pp. 712-718, 2005. [53] V. Scognamiglio, 'Nanotechnology in glucose monitoring: Advances and challenges in the last 10 years,' Biosensors and Bioelectronics, vol. 47, pp. 12-25, 2013. [54] M. Zayats, E. Katz, and I. Willner, 'Electrical contacting of glucose oxidase by surface-reconstitution of the apo-protein on a relay-boronic acid-FAD cofactor monolayer,' Journal of the American Chemical Society, vol. 124, pp. 2120-2121, 2002. [55] A. Chaubey and B. Malhotra, 'Mediated biosensors,' Biosensors and Bioelectronics, vol. 17, pp. 441-456, 2002. [56] Y. Huang, X. Qin, Z. Li, Y. Fu, C. Qin, F. Wu, et al., 'Fabrication of a chitosan/glucoseoxidase–poly(anilineboronicacid)–Au<sub> nano</sub>/Au-plated Au electrode for biosensor and biofuel cell,' Biosensors and Bioelectronics, vol. 31, pp. 357-362, 2012. [57] S. Marx, M. V. Jose, J. D. Andersen, and A. J. Russell, 'Electrospun gold nanofiber electrodes for biosensors,' Biosensors and Bioelectronics, vol. 26, pp. 2981-2986, 2011. [58] C. Qiu, X. Wang, X. Liu, S. Hou, and H. Ma, 'Direct electrochemistry of glucose oxidase immobilized on nanostructured gold thin films and its application to bioelectrochemical glucose sensor,' Electrochimica Acta, vol. 67, pp. 140-146, 2012. [59] S. Lee, B. S. Ringstrand, D. A. Stone, and M. A. Firestone, 'Electrochemical activity of glucose oxidase on a poly (ionic liquid)–Au nanoparticle composite,' ACS applied materials & interfaces, vol. 4, pp. 2311-2317, 2012. [60] B. Zheng, S. Xie, L. Qian, H. Yuan, D. Xiao, and M. M. Choi, 'Gold nanoparticles-coated eggshell membrane with immobilized glucose oxidase for fabrication of glucose biosensor,' Sensors and Actuators B: Chemical, vol. 152, pp. 49-55, 2011. [61] S. Zhang, N. Wang, H. Yu, Y. Niu, and C. Sun, 'Covalent attachment of glucose oxidase to an Au electrode modified with gold nanoparticles for use as glucose biosensor,' Bioelectrochemistry, vol. 67, pp. 15-22, 2005. [62] H.-C. Liu, C.-C. Tsai, and G.-J. Wang, 'Glucose biosensors based on a gold nanodendrite modified screen-printed electrode,' Nanotechnology, vol. 24, p. 215101, 2013. [63] L.-M. Lu, H.-B. Li, F. Qu, X.-B. Zhang, G.-L. Shen, and R.-Q. Yu, 'In situ synthesis of palladium nanoparticle–graphene nanohybrids and their application in nonenzymatic glucose biosensors,' Biosensors and Bioelectronics, vol. 26, pp. 3500-3504, 2011. [64] X. Kang, J. Wang, H. Wu, I. A. Aksay, J. Liu, and Y. Lin, 'Glucose oxidase– graphene–chitosan modified electrode for direct electrochemistry and glucose sensing,' Biosensors and Bioelectronics, vol. 25, pp. 901-905, 2009. [65] F. Xiao, F. Zhao, D. Mei, Z. Mo, and B. Zeng, 'Nonenzymatic glucose sensor based on ultrasonic-electrodeposition of bimetallic PtM (M= Ru, Pd and Au) nanoparticles on carbon nanotubes–ionic liquid composite film,' Biosensors and Bioelectronics, vol. 24, pp. 3481-3486, 2009. [66] A. I. Gopalan, K. P. Lee, D. Ragupathy, S. H. Lee, and J. W. Lee, 'An electrochemical glucose biosensor exploiting a polyaniline grafted multiwalledcarbonnanotube/perfluorosulfonateionomer–silica nanocomposite,' Biomaterials, vol. 30, pp. 5999-6005, 2009. [67] J. Luo, P. Luo, M. Xie, K. Du, B. Zhao, F. Pan, et al., 'A new type of glucose biosensor based on surface acoustic wave resonator using Mn-doped ZnO multilayer structure,' Biosensors and Bioelectronics, vol. 49, pp. 512-518, 2013. [68] Y. Mu, D. Jia, Y. He, Y. Miao, and H.-L. Wu, 'Nano nickel oxide modified non-enzymatic glucose sensors with enhanced sensitivity through an electrochemical process strategy at high potential,' Biosensors and Bioelectronics, vol. 26, pp. 2948-2952, 2011. [69] M. Liu, R. Liu, and W. Chen, 'Graphene wrapped Cu< sub> 2</sub> O nanocubes: Non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability,' Biosensors and Bioelectronics, vol. 45, pp. 206-212, 2013. [70] Z. Zhang, Y. Xie, Z. Liu, F. Rong, Y. Wang, and D. Fu, 'Covalently immobilized biosensor based on gold nanoparticles modified TiO< sub> 2</sub> nanotube arrays,' Journal of Electroanalytical Chemistry, vol. 650, pp. 241-247, 2011. [71] H. Qiu, L. Xue, G. Ji, G. Zhou, X. Huang, Y. Qu, et al., 'Enzyme-modified nanoporous gold-based electrochemical biosensors,' Biosensors and Bioelectronics, vol. 24, pp. 3014-3018, 2009. [72] E. Seker, M. L. Reed, and M. R. Begley, 'Nanoporous gold: fabrication, characterization, and applications,' Materials, vol. 2, pp. 2188-2215, 2009. [73] E. F. Douglass Jr, P. F. Driscoll, D. Liu, N. A. Burnham, C. R. Lambert, and W. G. McGimpsey, 'Effect of electrode roughness on the capacitive behavior of self-assembled monolayers,' Analytical chemistry, vol. 80, pp. 7670-7677, 2008. [74] S. Trasatti and O. Petrii, 'Real surface area measurements in electrochemistry,' Journal of Electroanalytical Chemistry, vol. 327, pp. 353- 376, 1992. [75] C.-Y. Guo, Y.-M. Wang, Y.-Q. Zhao, and C.-l. Xu, 'Non-enzymatic glucose sensor based on three dimensional nickel oxide for enhanced sensitivity,' Analytical Methods, 2013. [76] P. L. Kang, C. H. Chen, S. Y. Chen, Y. J. Wu, C. Y. Lin, F. H. Lin, et al., 'Nano sized collagen I molecules enhanced the differentiation of rat mesenchymal stem cells into cardiomyocytes,' Journal of Biomedical Materials Research Part A, vol. 101, pp. 2808-2816, 2013. [77]N. Eroshenko, R. Ramachandran, V. K. Yadavalli, and R. R. Rao, 'Effect of substrate stiffness on early human embryonic stem cell differentiation,' J Biol Eng, vol. 7, 2013. [78]P. C. Georges and P. A. Janmey, 'Cell type-specific response to growth on soft materials,' Journal of Applied Physiology, vol. 98, pp. 1547-1553, 2005. [79]N. D. Leipzig and M. S. Shoichet, 'The effect of substrate stiffness on adult neural stem cell behavior,' Biomaterials, vol. 30, pp. 6867-6878, 2009. [80]B. Evans, A. Shields, R. L. Carroll, S. Washburn, M. Falvo, and R. Superfine, 'Magnetically actuated nanorod arrays as biomimetic cilia,' Nano letters, vol. 7, pp. 1428-1434, 2007. [81]L. Mattila, M. Kilpeläinen, E. O. Terho, M. Koskenvuo, H. Helenius, and K. Kalimo, 'Prevalence of nickel allergy among Finnish university students in 1995,' Contact Dermatitis, vol. 44, pp. 218-223, 2001. [82]K. Wang, Element in life: Chinese Metrotogy publishing Company, 1992. [83]Y. Ren, K. Yang, and Y. Liang, '[Harmfulness of nickel in medical metal materials],' Sheng wu yi xue gong cheng xue za zhi= Journal of biomedical engineering= Shengwu yixue gongchengxue zazhi, vol. 22, p. 1067, 2005. [84]X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, 'Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,' Journal of the American Chemical Society, vol. 128, pp. 2115-2120, 2006. [85] C. Yu and J. Irudayaraj, 'Multiplex biosensor using gold nanorods,' Analytical chemistry, vol. 79, pp. 572-579, 2007. [86] N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben- Yakar, 'Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,' Nano letters, vol. 7, pp. 941-945, 2007. [87] K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, et al., 'A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods,' Acs Nano, vol. 2, pp. 687-692, 2008. [88] A. Dolati, M. Ghorbani, and M. Ahmadi, 'An electrochemical study of Au– Ni alloy electrodeposition from cyanide–citrate electrolytes,' Journal of Electroanalytical Chemistry, vol. 577, pp. 1-8, 2005. [89] Z. Yang, D. J. Lichtenwalner, A. S. Morris, J. Krim, and A. I. Kingon, 'Comparison of Au and Au–Ni alloys as contact materials for MEMS switches,' Microelectromechanical Systems, Journal of, vol. 18, pp. 287-295, 2009. [90] J.-H. Song, J.-Y. Yu, M.-Z. Zhang, Y.-J. Liang, and C.-W. Xu, 'Glycerol Electrooxidation on Au/Ni Core/shell Three-dimensional Structure Catalyst,' International Journal of Electrochemical Science, vol. 7, 2012. [91] F. Bao, J.-F. Li, B. Ren, Jian-LinYao, R.-A. Gu, and Z.-Q. Tian, 'Synthesis and characterization of Au@ Co and Au@ Ni core-shell nanoparticles and their applications in surface-enhanced Raman Spectroscopy,' The Journal of Physical Chemistry C, vol. 112, pp. 345-350, 2008. [92] H.-K. Chiu, I.-C. Chiang, and D.-H. Chen, 'Synthesis of NiAu alloy and core–shell nanoparticles in water-in-oil microemulsions,' Journal of Nanoparticle Research, vol. 11, pp. 1137-1144, 2009. [93] J. Fu, Y.-K. Wang, M. T. Yang, R. A. Desai, X. Yu, Z. Liu, et al., 'Mechanical regulation of cell function with geometrically modulated elastomeric substrates,' Nature methods, vol. 7, pp. 733-736, 2010. [94] A. J. Engler, S. Sen, H. L. Sweeney, and D. E. Discher, 'Matrix elasticity directs stem cell lineage specification,' Cell, vol. 126, pp. 677-689, 2006. [95] M. Cecelja and P. Chowienczyk, 'Role of arterial stiffness in cardiovascular disease,' JRSM Cardiovascular Disease, vol. 1, 2012. [96] S. Libertino, V. Aiello, A. Scandurra, M. Renis, and F. Sinatra, 'Immobilization of the enzyme glucose oxidase on both bulk and porous SiO2 surfaces,' Sensors, vol. 8, pp. 5637-5648, 2008. [97] S. Wang, K. Chen, L. Li, and X. Guo, 'Binding between proteins and cationic spherical polyelectrolyte brushes: Effect of pH, ionic strength, and stoichiometry,' Biomacromolecules, vol. 14, pp. 818-827, 2013. [98] Y. Cui, W. Hui, J. Su, Y. Wang, and C. Chen, 'Fe3O4/Au composite nano- particles and their optical properties,' Science in China Series B: Chemistry, vol. 48, pp. 273-278, 2005. [99] L. Wang, L. Wang, J. Luo, Q. Fan, M. Suzuki, I. S. Suzuki, et al., 'Monodispersed core-shell Fe3O4@ Au nanoparticles,' The Journal of Physical Chemistry B, vol. 109, pp. 21593-21601, 2005. [100]S.-Y. Yang, K.-Y. Lien, K.-J. Huang, H.-Y. Lei, and G.-B. Lee, 'Micro flow cytometry utilizing a magnetic bead-based immunoassay for rapid virus detection,' Biosensors and Bioelectronics, vol. 24, pp. 855-862, 2008. [101]R.-P. Liang, G.-H. Yao, L.-X. Fan, and J.-D. Qiu, 'Magnetic Fe< sub> 3</sub> O< sub> 4</sub>@ Au composite-enhanced surface plasmon resonance for ultrasensitive detection of magnetic nanoparticle-enriched α- fetoprotein,' Analytica chimica acta, vol. 737, pp. 22-28, 2012. [102]Y. Zhuo, P.-X. Yuan, R. Yuan, Y.-Q. Chai, and C.-L. Hong, 'Bienzyme functionalized three-layer composite magnetic nanoparticles for electrochemical immunosensors,' Biomaterials, vol. 30, pp. 2284-2290, 2009. [103]C. Xu, J. Xie, D. Ho, C. Wang, N. Kohler, E. G. Walsh, et al., 'Au– Fe3O4 Dumbbell Nanoparticles as DualFunctional Probes,' Angewandte Chemie International Edition, vol. 47, pp. 173-176, 2008.zh_TW
dc.description.abstractIn this research, a novel method of fabrication for the growth of Au-Ni coaxial nanorod arrays using AAO templates was investigated. A thin Au film was deposited on one side of the AAO template by sputtering, which was used as the electrode for further electroforming of the Ni nanorods. Nickel nanorods were then electroformed into the nanochannels of the AAO template. Sodium hydroxide solution was then used for etching off the alumina of the AAO template to form a Ni nanorod array. The immersion gold (IG) method was used for forming an Au shell that wrapped each individual Ni nanorod. The average diameter of the synthesized Ni nanorods was estimated to be 100-150 nm. After the IG process, the average thickness of the additive Au shell was about 50-100 nm. Since the height of the synthesized coaxial nanorod was around 30m, the aspect ratio was calculated to be 100-140. Compared to the already reported Au nanorod arrays having an aspect ratio of only around 20, our Au–Ni nanorod array could provide an enhanced effective sensing area. A two-dimensional magnetic force was employed as the actuating source to drive the patterned Au–Ni coaxial nanorod array to move in both x and y directions. Because of the ferromagnetic characteristics of the Ni core, the 2-D movement of the Au–Ni nanorod array could be manipulated by the magnetic force. The proposed Au-Ni coaxial nanorod arrays were further used for the fabrication of high sensitivity glucose biosensors. Actual glucose measurements revealed that the proposed biosensing scheme could operate in a linear range of 27.5 μM-27.5 mM with a high sensitivity of 778.2 μA mM−1 cm−2. Long-term stability of the proposed device was confirmed through 30-day investigation; Biocompatibility of the proposed Au–Ni coaxial nanorod array was confirmed through the culture of endothelial cells (ECs) on the array surface. Preliminary investigation of the influences of the array stiffness in terms of its height on cell morphology and cell division were conducted. The cell culture results indicate that the cell expanded more on the higher nanorod array. The Au–Ni coaxial nanorod array will be further investigated for effective induction of stem cell differentiation.en_US
dc.description.abstract本研究提出一種新的高深寬比金鎳同軸奈米柱製程,其製程為先製作陽極氧化鋁膜(AAO)做為模板 接著於 AAO 其中一側濺鍍金薄膜做為電鑄製程之電極,再利用奈米電鑄技術 將金屬鎳沈積於奈米孔洞中 接著以氫氧化鈉蝕刻氧化鋁,形成金屬鎳奈米柱陣列,最後再以浸金(IG)之方法使金沉積於每根鎳奈米柱表面,而製作出高深寬比磁性金鎳同軸奈米柱陣列;鎳奈米柱之平均直徑約為 100-150nm,而經過浸金處理後之金殼厚度可控制在 50-100 nm,又同軸奈米柱之高度可達 30 μm,所以其深寬比可達 100-140 之範圍內,對比於一般金奈米柱之深寬比僅 20,本研究所提出之金鎳同軸奈米柱可以提供更多的有效感測面積;因金鎳同軸奈米柱是屬於磁性材料,所以可藉由兩方向的電磁致動系統使金鎳同軸奈米柱作動。 本研究進一步將所製作之金金鎳同軸奈米柱陣列應用於製作葡萄糖感測器,藉由實際的葡萄糖檢測之結果顯示,本研究所提出之生物感測器之感測線性範圍為 27.5 μM-27.5 mM,並且具有極高的靈敏度 778.2 μA mM−1 cm−2,且其在長時間穩定性測試之結果可達 30 天之久;本研究接著將內皮細胞培養於金鎳同軸奈米柱上,證實金鎳同軸奈米柱陣列確實有生物相容性之特點,並發現金鎳同軸奈米柱之高低差異導致之柔軟度差異,可引導細胞之不同型態生長與分生,實驗結果發現內皮細胞對於較高之奈米柱陣列有較佳的貼附形態且有較佳之增生分化效果,因此可藉由控制金鎳同軸奈米柱之高低調控細胞之型態及增生分化,未來可將幹細胞培養於不同柔軟度之金鎳同軸奈米柱上,並進一步研究及探討以本研究之金鎳同軸奈米柱陣列誘導幹細胞分化成特定之組織細胞。zh_TW
dc.description.tableofcontents致謝 ii 摘要 iii Abstract iv Table of contents vi List of Figures viii List of Tables xiv Chapter 1. Research background and purpose 1 Chapter 2. Anodic aluminum oxide membranes 7 2.1. Introduction of anodic aluminum oxide membranes 7 2.2. Anodization process of aluminum 9 2.2.1. Nanopore initiation 9 2.2.2. Steady-state porous anodic film formation 11 2.3. Parameters affect the characteristics of porous aluminum oxide membranes 12 Chapter 3. Fabrication of Au-Ni coaxial nanorod arrays 15 3.1. Experiment scheme of Au-Ni coaxial nanorod arrays 15 3.1.1. AAO preparation 15 3.1.2. Working electrode coating 26 3.1.3. Nickel nanorods growth by electroforming 27 3.1.4. Alumina template removal 28 3.1.5. Immersion gold and annealing 28 3.2. Results of the Au-Ni coaxial nanorod array fabrication 30 3.3. Fabrication of patterned nanorod arrays with magnetic actuating 36 3.4. Results of the patterned nanorod arrays with magnetic actuating 39 Chapter 4. Highly sensitive glucose biosensor based on Au-Ni coaxial nanorod array 41 4.1. Introduction 41 4.2. Material and method 50 4.2.1 Electrode fabrication and characterization 50 4.2.2. Glucose biosensor preparation and glucose concentration detection 51 4.3. Results and Discussions 53 4.3.1. Au–Ni coaxial nanorod array fabrication results 53 4.3.2 Glucose detection results 57 Chapter 5. Biocompatible high aspect ratio Au–Ni coaxial nanorod arrays 63 5.1. Background and purpose 63 5.2. Material and method 70 5.2.1. Fabrication of Au-Ni coaxial nanorod arrays 70 5.2.2. Cell culture 70 5.3.1. Au–Ni coaxial nanorod array fabrication results 73 5.3.2. Cell culture results 73 Chapter 6. Conclusions and future works 77 6.1. Conclusions 77 6.2. Future works 79 References 82 Resume 91zh_TW
dc.titleThe fabrication of Au-Ni coaxial nanorod arrays with applying in biosensor and tissue engineeringen_US
dc.typeThesis and Dissertationen_US
item.openairetypeThesis and Dissertation-
item.fulltextwith fulltext-
Appears in Collections:機械工程學系所
Files in This Item:
File SizeFormat Existing users please Login
nchu-103-8097061501-1.pdf11.43 MBAdobe PDFThis file is only available in the university internal network   
Show simple item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.