Please use this identifier to cite or link to this item:
標題: A novel glucose biosensor based on a silicon nanowire array electrode
作者: 馮文昭
Feng Wen-Chao
關鍵字: glucose biosensor;silicon nanowire array;metal-assisted etching;葡萄糖生物感測器;矽奈米線陣列;金屬輔助化學蝕刻
引用: [1] A. Chaubey and B. D. Malhotra, 'Mediated biosensors,' Biosensors and Bioelectronics, vol. 17, pp. 441-456, 2002. [2] L. C. Clark and C. Lyons, 'Electrode systems for continuous monitoring in cardiovascular surgery,' Annals of the New York Academy of sciences, vol. 102, pp. 29-45, 1962. [3] C. L. C, 'Membrane polarographic electrode system and method with electrochemical compensation,' ed: Google Patents, 1970. [4] J. T. Holland, C. Lau, S. Brozik, P. Atanassov, and S. Banta, 'Engineering of glucose oxidase for direct electron transfer via site-specific gold nanoparticle conjugation,' Journal of the American Chemical Society, vol. 133, pp. 19262-19265, 2011. [5] B. Zheng, S. Xie, L. Qian, H. Yuan, D. Xiao, and M. M. Choi, 'Gold nanoparticles-coated eggshell membrane with immobilized glucose oxidase for fabrication of glucose biosensor,' Sensors and Actuators B: Chemical, vol. 152, pp. 49-55, 2011. [6] S. Lee, B. S. Ringstrand, D. A. Stone, and M. A. Firestone, 'Electrochemical activity of glucose oxidase on a poly (ionic liquid)–Au nanoparticle composite,' ACS applied materials & interfaces, vol. 4, pp. 2311-2317, 2012. [7] C. Qiu, X. Wang, X. Liu, S. Hou, and H. Ma, 'Direct electrochemistry of glucose oxidase immobilized on nanostructured gold thin films and its application to bioelectrochemical glucose sensor,' Electrochimica Acta, vol. 67, pp. 140-146, 2012. [8] V. Scognamiglio, 'Nanotechnology in glucose monitoring: Advances and challenges in the last 10 years,' Biosensors and Bioelectronics, vol. 47, pp. 12-25, 2013. [9] K. Yang, G.-W. She, H. Wang, X.-M. Ou, X.-H. Zhang, C.-S. Lee, and S.-T. Lee, 'ZnO nanotube arrays as biosensors for glucose,' The Journal of Physical Chemistry C, vol. 113, pp. 20169-20172, 2009. [10] M. Ahmad, C. Pan, Z. Luo, and J. Zhu, 'A single ZnO nanofiber-based highly sensitive amperometric glucose biosensor,' The Journal of Physical Chemistry C, vol. 114, pp. 9308-9313, 2010. [11] X. Liu, Q. Hu, Q. Wu, W. Zhang, Z. Fang, and Q. Xie, 'Aligned ZnO nanorods: a useful film to fabricate amperometric glucose biosensor,' Colloids and Surfaces B: Biointerfaces, vol. 74, pp. 154-158, 2009. [12] Z. Dai, G. Shao, J. Hong, J. Bao, and J. Shen, 'Immobilization and direct electrochemistry of glucose oxidase on a tetragonal pyramid-shaped porous ZnO nanostructure for a glucose biosensor,' Biosensors and Bioelectronics, vol. 24, pp. 1286-1291, 2009. [13] L. Meng, J. Jin, G. Yang, T. Lu, H. Zhang, and C. Cai, 'Nonenzymatic electrochemical detection of glucose based on palladium? single-walled carbon nanotube hybrid nanostructures,' Analytical chemistry, vol. 81, pp. 7271-7280, 2009. [14] Y. Mu, D. Jia, Y. He, Y. Miao, and H.-L. Wu, 'Nano nickel oxide modified non-enzymatic glucose sensors with enhanced sensitivity through an electrochemical process strategy at high potential,' Biosensors and Bioelectronics, vol. 26, pp. 2948-2952, 2011. [15] Z. Zhang, Y. Xie, Z. Liu, F. Rong, Y. Wang, and D. Fu, 'Covalently immobilized biosensor based on gold nanoparticles modified TiO< sub> 2</sub> nanotube arrays,' Journal of Electroanalytical Chemistry, vol. 650, pp. 241-247, 2011. [16] H.-C. Liu, C.-C. Tsai, and G.-J. Wang, 'Glucose biosensors based on a gold nanodendrite modified screen-printed electrode,' Nanotechnology, vol. 24, p. 215101, 2013. [17] T. L?tzbeyer, W. Schuhmann, and H.-L. Schmidt, 'Minizymes. A new strategy for the development of reagentless amperometric biosensors based on direct electron-transfer processes,' Bioelectrochemistry and bioenergetics, vol. 42, pp. 1-6, 1997. [18] 呂鋒洲,林仁混, '基礎酵素學,' 聯經出版社, 1991. [19] 劉英俊, '酵素工程,' 中央圖書出版社, 1995. [20] A. M. Morales and C. M. Lieber, 'A laser ablation method for the synthesis of crystalline semiconductor nanowires,' Science, vol. 279, pp. 208-211, 1998. [21] D. Yu, Z. Bai, Y. Ding, Q. Hang, H. Zhang, J. Wang, Y. Zou, W. Qian, G. Xiong, and H. Zhou, 'Nanoscale silicon wires synthesized using simple physical evaporation,' Applied Physics Letters, vol. 72, pp. 3458-3460, 1998. [22] T. Hanrath and B. A. Korgel, 'Supercritical fluid–liquid–solid (SFLS) synthesis of Si and Ge nanowires seeded by colloidal metal nanocrystals,' Advanced Materials, vol. 15, pp. 437-440, 2003. [23] X. Li and P. Bohn, 'Metal-assisted chemical etching in HF/H 2 O 2 produces porous silicon,' Applied Physics Letters, vol. 77, pp. 2572-2574, 2000. [24] M. Dawood, S. Tripathy, S. Dolmanan, T. Ng, H. Tan, and J. Lam, 'Influence of catalytic gold and silver metal nanoparticles on structural, optical, and vibrational properties of silicon nanowires synthesized by metal-assisted chemical etching,' Journal of Applied Physics, vol. 112, p. 073509, 2012. [25] S. Bauer, J. G. Brunner, H. Jha, Y. Yasukawa, H. Asoh, S. Ono, H. B?hm, J. P. Spatz, and P. Schmuki, 'Ordered nanopore boring in silicon: metal-assisted etching using a self-aligned block copolymer Au nanoparticle template and gravity accelerated etching,' Electrochemistry Communications, vol. 12, pp. 565-569, 2010. [26] K. Balasundaram, J. S. Sadhu, J. C. Shin, B. Azeredo, D. Chanda, M. Malik, K. Hsu, J. A. Rogers, P. Ferreira, and S. Sinha, 'Porosity control in metal-assisted chemical etching of degenerately doped silicon nanowires,' Nanotechnology, vol. 23, p. 305304, 2012. [27] K.-Q. Peng, Y.-J. Yan, S.-P. Gao, and J. Zhu, 'Synthesis of large-area silicon nanowire arrays via self-assembling nanoelectrochemistry,' Advanced Materials, vol. 14, p. 1164, 2002. [28] K. Peng and J. Zhu, 'Morphological selection of electroless metal deposits on silicon in aqueous fluoride solution,' Electrochimica Acta, vol. 49, pp. 2563-2568, 2004. [29] K. Peng, Y. Yan, S. Gao, and J. Zhu, 'Dendrite?Assisted Growth of Silicon Nanowires in Electroless Metal Deposition,' Advanced Functional Materials, vol. 13, pp. 127-132, 2003. [30] Y. Cui, Q. Wei, H. Park, and C. M. Lieber, 'Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,' Science, vol. 293, pp. 1289-1292, 2001. [31] G.-J. Zhang, L. Zhang, M. J. Huang, Z. H. H. Luo, G. K. I. Tay, E.-J. A. Lim, T. G. Kang, and Y. Chen, 'Silicon nanowire biosensor for highly sensitive and rapid detection of Dengue virus,' Sensors and Actuators B: Chemical, vol. 146, pp. 138-144, 2010. [32] G.-J. Zhang, M. J. Huang, J. A. J. Ang, E. T. Liu, and K. V. Desai, 'Self-assembled monolayer-assisted silicon nanowire biosensor for detection of protein–DNA interactions in nuclear extracts from breast cancer cell,' Biosensors and Bioelectronics, vol. 26, pp. 3233-3239, 2011. [33] G.-J. Zhang, Z. H. H. Luo, M. J. Huang, G. K. I. Tay, and E.-J. A. Lim, 'Morpholino-functionalized silicon nanowire biosensor for sequence-specific label-free detection of DNA,' Biosensors and Bioelectronics, vol. 25, pp. 2447-2453, 2010. [34] K. S. Chang, C. C. Chen, J. T. Sheu, and Y.-K. Li, 'Detection of an uncharged steroid with a silicon nanowire field-effect transistor,' Sensors and Actuators B: Chemical, vol. 138, pp. 148-153, 2009. [35] A. Kulkarni, Y. Xu, C. Ahn, R. Amin, S. H. Park, T. Kim, and M. Lee, 'The label free DNA sensor using a silicon nanowire array,' Journal of biotechnology, vol. 160, pp. 91-96, 2012. [36] K. S. Kim, H.-S. Lee, J.-A. Yang, M.-H. Jo, and S. K. Hahn, 'The fabrication, characterization and application of aptamer-functionalized Si-nanowire FET biosensors,' Nanotechnology, vol. 20, p. 235501, 2009. [37] C.-C. Wu, F.-H. Ko, Y.-S. Yang, D.-L. Hsia, B.-S. Lee, and T.-S. Su, 'Label-free biosensing of a gene mutation using a silicon nanowire field-effect transistor,' Biosensors and Bioelectronics, vol. 25, pp. 820-825, 2009. [38] X. Vu, R. GhoshMoulick, J. Eschermann, R. Stockmann, A. Offenh?usser, and S. Ingebrandt, 'Fabrication and application of silicon nanowire transistor arrays for biomolecular detection,' Sensors and Actuators B: Chemical, vol. 144, pp. 354-360, 2010. [39] S. Yan, N. He, Y. Song, Z. Zhang, J. Qian, and Z. Xiao, 'A novel biosensor based on gold nanoparticles modified silicon nanowire arrays,' Journal of Electroanalytical Chemistry, vol. 641, pp. 136-140, 2010. [40] B. Tao, F. Miao, and P. K. Chu, 'Preparation and characterization of a novel nickel–palladium electrode supported by silicon nanowires for direct glucose fuel cell,' Electrochimica Acta, vol. 65, pp. 149-152, 2012. [41] D. H. Kwon, H. H. An, H.-S. Kim, J. H. Lee, S. H. Suh, Y. H. Kim, and C. S. Yoon, 'Electrochemical albumin sensing based on silicon nanowires modified by gold nanoparticles,' Applied surface science, vol. 257, pp. 4650-4654, 2011. [42] D. A. Skoog and D. M. West, Principles of instrumental analysis: Saunders College Philadelphia, 1980. [43] A. J. Bard and L. R. Faulkner, Electrochemical methods: fundamentals and applications vol. 2: Wiley New York, 1980. [44] H. Yang, Z. Li, X. Wei, R. Huang, H. Qi, Q. Gao, C. Li, and C. Zhang, 'Detection and discrimination of alpha-fetoprotein with a label-free electrochemical impedance spectroscopy biosensor array based on lectin functionalized carbon nanotubes,' Talanta, vol. 111, pp. 62-68, 2013. [45] R. Ohno, H. Ohnuki, H. Wang, T. Yokoyama, H. Endo, D. Tsuya, and M. Izumi, 'Electrochemical impedance spectroscopy biosensor with interdigitated electrode for detection of human immunoglobulin A,' Biosensors and Bioelectronics, vol. 40, pp. 422-426, 2013. [46] B. T. T. Nguyen, A. E. K. Peh, C. Y. L. Chee, K. Fink, V. T. Chow, M. M. Ng, and C.-S. Toh, 'Electrochemical impedance spectroscopy characterization of nanoporous alumina dengue virus biosensor,' Bioelectrochemistry, vol. 88, pp. 15-21, 2012. [47] Z. Chen, L. Chen, H. Ma, T. Zhou, and X. Li, 'Aptamer biosensor for label-free impedance spectroscopy detection of potassium ion based on DNA G-quadruplex conformation,' Biosensors and Bioelectronics, vol. 48, pp. 108-112, 2013. [48] R. Pauliukaite, M. E. Ghica, O. Fatibello-Filho, and C. Brett, 'Electrochemical impedance studies of chitosan-modified electrodes for application in electrochemical sensors and biosensors,' Electrochimica Acta, vol. 55, pp. 6239-6247, 2010. [49] M. Cortina-Puig, X. Mu?oz-Berbel, C. Calas-Blanchard, and J.-L. Marty, 'Electrochemical characterization of a superoxide biosensor based on the co-immobilization of cytochrome< i> c</i> and XOD on SAM-modified gold electrodes and application to garlic samples,' Talanta, vol. 79, pp. 289-294, 2009. [50] J. Yang, X. Wang, and H. Shi, 'An electrochemical DNA biosensor for highly sensitive detection of phosphinothricin acetyltransferase gene sequence based on polyaniline-(mesoporous nanozirconia)/poly-tyrosine film,' Sensors and Actuators B: Chemical, vol. 162, pp. 178-183, 2012.
In this study, a novel and simple electrochemical glucose biosensor based on a silicon nanowire array (SNA) electrode was proposed. Metal-assisted etching (MAE) method using an AgNO3 and HF mixing solution as the etchant was employed to grow the silicon nanowire array (SNA) electrode. A thin gold shell is then sputtered over each silicon nanowire. Potassium ferricyanide, glucose oxidase (GOx), and a Nafion thin film were then sequentially coated onto the fabricated SNA for glucose detection. The optimum parameter of SNA electrode was fabricated by a 100 s etching process, followed by a 45 s sputtering of Au. The processing time of the MAE and sputtering as well as the GOx concentration were optimized in terms of the redox peak currents of the SNA electrode. Compared with the corresponding plane gold electrode, the effective sensing area of the synthesized SNA electrode was measured to be 6.12 folds. Actual glucose detections illustrated that the SNA based devices could function at a sensitivity of 372 μA mM?1 cm?2 with a linear detection range from 55.1 mM–13.78 mM and detection limit of 11 mM. The proposed SNA electrode based glucose biosensor possesses advantages of simple fabrication process, low cost, and high sensitivity. It is feasible for future clinical applications.

本研究提出一種以矽奈米線陣列電極(SNA)為基礎之新型簡易電化學葡萄糖生物感測器,利用金屬輔助化學蝕刻(MAE)法以硝酸銀(AgNO3)和氫氟酸(HF)混合溶液做為蝕刻液,製作出矽奈米線陣列(SNA)電極,並以濺鍍的方式使金薄膜覆於矽奈米線上,形成金/矽同軸奈米線陣列電極。而後將製作好之電極依序接附赤血鹽、葡萄糖氧化酵素(GOx)、Nafion,完成葡萄糖檢測晶片,用以檢測葡萄糖濃度。電極製作之最佳參數為蝕刻時間100秒和濺鍍金時間45秒,相較於平面金電極,本研究之SNA電極有效感測面積量增加達6.12倍。依據實際葡萄糖感測結果,本研究之葡萄糖檢測晶片之檢測靈敏度為372 μA/ mM?cm2,線性範圍為0.55 mM-13.78 mM,檢測極限為11μM。以SNA作為葡萄糖生物感測器之電極其優點為製程簡單、成本低廉和靈敏度高,有極佳之商品化可行性。
Rights: 同意授權瀏覽/列印電子全文服務,2017-08-31起公開。
Appears in Collections:機械工程學系所

Files in This Item:
File SizeFormat Existing users please Login
nchu-103-7101061506-1.pdf3.53 MBAdobe PDFThis file is only available in the university internal network   
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.