Please use this identifier to cite or link to this item:
標題: Numerical investigations of heat transfer characteristics on regenerator for waste heat recovery system
作者: 楊玉璧
Duong Ngoc Bich
關鍵字: Regenerator;energy recovery;heating process;cooling process;energy efficiency;再生器;能源回收;加熱過程;冷卻過程;能源效率
引用: References References 1. US. Department of Energy, 'Waste heat recovery - Technology and Opportunities in US Industry', BCS Incorporated, March 2008. 2. Karl B. Schnelle Jr. , Charles A. Brown, 'Air Pollution Control Technology Handbook', CRC Press Publisher, 2001. 3. Boger T., 'Performance and Design of TRO/RCO with Ceramic Honeycombs - Influence of Unequal Mass Flow and Auto-Ignition', Corning GmbH: Wiesbaden, Germany, 2000. 4. Zarrinehkafsh M. T. and Sadrameli S. M., 'Simulation of Fixed Bed Regenerative Heat Exchangers for Flue Gas Heat Recovery', Appl. Therm. Eng. 24, 373-382, 2004. 5. S.Frigerio, M.Mehl and E. Ranzi*, 'Improve efficiency of thermal regenerators and VOCs abatement systems: An experimental and modeling study', Experimental Thermal and Fluid Science 31 -403–411, 2007. 6. Mario Amelio* and Pietropaolo Morrone, 'Numerical evaluation of the energetic performances of structured and random packed beds in regenerative thermal oxidizers', Applied Thermal Engineering 27 -762–770, 2007. 7. Pietropaolo Morrone, Francesco P. Di Maio, Alberto Di Renzo, and Mario Amelio, 'Modeling Process Characteristics and Performance of Fixed and Fluidized Bed Regenerative Thermal Oxidizer', Ind. Eng. Chem. Res., 45, 4782 4790, 2006. 8. Schack A., 'Industrial heat transfer: practical and theoretical with basic numerical examples', New York: John Wily, 1965. 9. Trinks W., 'Industrial furnaces', volume I. New York: John Wily, 1944. 10. Yazicizade AY., 'Untersuchung der Warmeubertragung und Druckabfalls in regenerator', Glastechn Ber, 39:203–17, 1996. 11. Yu. J, Zhang M, Fang W, Zhou Y, and Zhao G., 'Study on performance of the ball packed-bed regenerator: experiment and simulation', Applied Thermal Engineering. 22:641-651, 2002. 12. Arcot R. Balakrishnan and David C., 'Heat Transfer in Gas-Solid Packed Bed Systems', Ind. Eng. Chem. Process Des. Dev., Vol. 18, No. 1, 1979. 13. Dongsheng Wen and Yulong Ding*, 'Heat transfer of gas flow through a packed bed', Chemical Engineering Science 61. 3532 – 3542, 2006. 14. Anthony G. Dixon * and Johan H. van Dongeren, 'The influence of the tube and particle diameters at constant ratio on heat transfer in packed beds', Chemical Engineering and Processing 37.23-32,1997. 15. Beerkens RGC and Waal H., 'Experimental and thermodynamic characterisation of deposition and condensation products from exhaust gases of glass furnace', Glass Technol, 28 (6):246–51, 1987. 16. Vishal Sardeshpande, Renil Anthony, U.N. Gaitonde, and Rangan Banerjee, 'Performance analysis for glass furnace regenerator', Applied Energy 88 .4451–4458, 2011. 17. Vishal Sardeshpande, U.N. Gaitonde, and Rangan Banerjee*, 'Model based energy benchmarking for glass furnace', Energy Conversion and Management 48. 2718–2738, 2007. 18. Jianwei Yuan * and Ichiro Naruse, 'Effects of Air Dilution on Highly Preheated Air Combustion in a Regenerative Furnace', Energy Fuels 13, pp 99–104, 1999. 19. Tunc Goruney*, Richard Huang, and Jinghong Wang, 'Alternative fuels for glass melting, Air Products and Chemicals', Inc., (EU002805) 330-13-036-EUR, 2013. 20. Shin – Ming Lai, 'Periodic operation of heat regerator: a new method for calculation of thermal efficiency', Washington university, 1983. 21. Xinyu Ming, Dan S. Borgnakke, Marco A. Campos, Pawel Olszewski, Arvind Atreya, and Claus Borgnakke, 'Possibility of Combustion Furnace Operation with Oxygen-Enriched Gas from Nitrogen Generator', University of Michigan, ACEEE Summer Study on Energy Efficiency in Industry, 2003. 22. Kwangu Kang, Sung-Kook Hong, Dong-Soon Noh, and Hong-Sun Ryou*, 'Heat transfer characteristics of a ceramic honeycomb regenerator for an oxy-fuel combustion furnace', Applied Thermal Engineering, 70. 494-500, 2014. 23. R.J Naveaux and J.J. Shea, 'A method for improving regenerative furnace efficiency', Toledo Engineering Co., Inc. Glass Industry, Ohio, 1982. 24. Dongsheng Wen and Yulong Ding, 'Heat transfer of gas flow through a packed bed', Chemical Engineering Science 61.3532 – 3542, 2006. 25. G. Srinivasa Rao, K.V. Sharma*, S.P. Chary, R.A. Bakar, M. M. Rahman, K. Kadirgama and M.M. Noor, 'Experimental study on heat transfer coefficient and friction factor of Al2O3 nanofluid in a packed bed column', Journal of Mechanical Engineering and Sciences, e-ISSN: 2231-8380 Volume 1, 2001. 26. M Wnek, 'Ceramic or metallic? - material aspects of compact heat regenerator energy efficiency', Technologies and Properties of Modern Utilised Materials, IOP Conf. Series: Materials Science and Engineering 35.012022, 2012. 27. Ying Liu, Yiping Liu, Shuming Tao, Xunliang Liu, and Zhi Wen, 'Three-dimensional analysis of gas flow and heat transfer in a regenerator with alumina balls', Appl. Therm. Eng. 69.113e122, 2014. 28. M.Necati Özişik, 'Finite Difference Methods in Heat Transfer', North Carolina State University, CRC Press, 1994. 29. Latif M.Jiji* and Herbert G.Kayser, 'Heat Conduction', Jaico Publishing House, ISBN 81-7992-115-8, 2003. 30. Incropera, Dewitt, Bergman, and Lavine, 'Introduction to Heat Transfer', Fifth Edition, 2007. 31. Ergun Sabri., 'Fluid flow through packed columns', Chem. Eng. Prog. 48, 1952. 32. Niven R. K., 'Physical Insight into Ergun and Wen & Yu Equations for Fluid Flow in Packed and Fluidized Beds', Chem. Eng. Sci. 57,527-534, 2002. 33. Sonntag, Borgnakke, and Van Wylen, 'Fundamentals of Thermodynamics', Fifth, 1998.
One of the excellent methods employed not only to recover waste heat from combustion furnaces is using regenerative heat exchanger that can help facilities significantly reduce fossil fuel consumption, as well as reduce associated operating costs, but also to control the Volatile Organic Compounds (VOCs) that consists of different kinds of chemical being adverse environment and health effects. The purpose of this study is to investigate the effects of operating and design parameters, two crucial variables in thermal performance of regenerative heat exchanger with two alternative working beds, on the efficiency of thermal exchange and the pressure drop through heating and cooling process. It is clearly that an extensive knowledge and thorough understanding of the heat transfer phenomena in the regenerator is essential. This study used numerical and analytical methods to simulate heat transfer process of regenerator brought out expected results for the temperatures of gases and solid material as function of time and space presented for the general asymmetric and unbalanced case.
In particular, the thermal recovery efficiency is affected by the operating parameters as cycle duration (2% difference in each concerned semi-cycle duration), specific mass flow rate G (approximately 7% difference of the thermal effectiveness between G =1 and G =0.25 kg.m-2.s-1). On the other hand, it is investigated that design parameters also influenced on regenerator performance such as ball size (thermal recovery efficiency is higher 97% for balls with diameter of 6mm and lower 95% for that of 15mm), bed height (about 2% disparity of thermal effectiveness of 0.8m, 1m, 1.5m, and 2m height of regenerator), bed void-age (about 4% disparity of thermal efficiency between 44% and 64% in porosity). These listed parameters also impact considerably to the pressure drop, namely the increase the ball size reduces the pressure drop whereas the decrease the specific mass flow rate enlarges the pressure drop of whole furnace.
Moreover, comparison the capacity of thermal recovery of a uniform particle and that of a non-uniform particle as well as the similarity of thermal storage performance between the modified radius of non-uniform particle and the uniform are also illustrated in this paper.
Last but not least, the comparison of real regenerator as a waste heat recovery device of real model (regenerative furnaces in a glass factory) to the simulation model for fixed bed will bring us the deep and clear overview to thermal distribution of regenerator about the thermal recovery efficiency.
Rights: 同意授權瀏覽/列印電子全文服務,2015-07-29起公開。
Appears in Collections:機械工程學系所

Files in This Item:
File SizeFormat Existing users please Login
nchu-104-7102061085-1.pdf2.38 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.