Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/9142
標題: 使用粒子群-進化規劃演算法之熱泵乾燥機PID溫度控制
PID Temperature Control Using PSO-EP Algorithm for Water Source Heat Pump Dryer
作者: 蘇振泰
Su, Chen-Tai
關鍵字: 粒子群-進化規劃演算法;PSO-EP Algorithm
出版社: 電機工程學系所
引用: References [1] http://www.airsystemsonline.com & http://home.howstuffworks.com [2] G. A. Nowakowski, “An introduction and status update on unitary engine-driven heat pumps,” ASHRAE Transactions, pp42–47, January 1996. [3] Y. Hasegawa, T. Nakano, T. Fukuda, G. Vachkov, “Learning predictive control for gas heat pumps,” Proc. of the IEEE ,vol. 2, pp. 1062–7, Oct. 2000. [4] L.R. Russo, B.W. Bequette, “State space versus input–output representations for cascade control of unstable systems, ” Ind Eng Chem Res, Vol. 36, pp. 2271–2278, 1997. [5] E. H. Mamdani, “Application of fuzzy algorithms for control of simple dynamic plant,” Proc. of IEEE, Vol. 121, No. 12, pp.1585–1594, 1974. [6] Y. I Gu, E. zelkaya M, I. Eksin, “Self tuning fuzzy PID type load and frequency controller,” Energy Conversion Magazine, Vol. 45, pp.377–390, 2004. [7] J. P. Gerry, "A comparison of PID control algorithm," Control Engineering, pp.102-105, March 1987. [8] J. G. Ziegler, and N. B. Nichols, "Optimal settings for automatic controllers," ASME Trans., pp.759-768, Nov. 1942. [9] C. C. Hang, K. J. Astrom, and W. K. Ho, "Refinements of the Ziegler-Nichols tuning formula," IEE Proc.-D, vol.138, No.2, March 1991. [10] G. H. Cohen, And G. A. Coon, "Theoretical considerations of retarded control," ASME Trans., vol.75, pp.827-836, 1953. [11] A. Kaya and T. J. Scheib, "Tuning of PID controls of different structures, " Control Engineering, pp.62-65, July 1988. [12] M. Yuwana, and D. E. Seborg, "A new method for on-line controller tuning," AIchE Journal, vol.28, No.3, May 1982. [13] J. N. Koivo, and J. Sorvari, "On-line tuning of a multivariable PID Controller for robot manipulators," Proc. 24th IEEE Conf. on Decision & Control, Ft. Lauderdale, FL. pp.1502-504, Dec. 1985. [14] Q.G. Wang, T.H. Lee, H.W. Fung, Bi Q. and, Y. Zhang, “PID tuning for improved performance,” IEEE Trans. Control Systems Technology, Vol.7, pp.457-465, 1999. [15] J. M. Maciejowski, Predictive control with constraints. Prentice-Hall, New Jersey, 2002. [16] C. H. Lu, C. C Tsai, “Generalized predictive control using recurrent fuzzy neural networks for industrial processes,” Journal of Process Control, vol.17, pp. 83-92, 2007. [17] I. Kaya, N. Tan and D.P. Atherton, “Simple procedure for improving performance of pid controllers, ”Proceedings of 2003 IEEE Conference on Control Applications, Vol.2, pp. 882-885, 2003. [18] I. Kaya, N. Tan, and D.P. Atherton, “A simple procedure for improving performance of PID controller,” Prof. IEEE, pp 882-885, 2003. [19] B.Y. Li, K.H. Ang, and C.Y. Chong, “PID control system analysis and design,” IEEE Trans. Control System Magazine, Vol.26,pp. 32-40, 2006. [20] A. Visioli, , “A new design for a PID plus feedforward controller,” Journal of Process Control, Vol14, pp. 457-463, 2004. [21] H.S. Hwang, J.N. Choi, W.H. Lee, and J.K. Kim, “A tuning algorithm for the PID controller fuzzy theory,” International Joint Conference on Neural Networks, Vol. 4 , pp. 2210-2214, 1999. [22] J. Kennedy, R.C. Eberhart, “Particle swarm optimization,” Proceedings of IEEE International Conference on Neural Networks IV, pp.1942–1948, 1995. [23] H. Yoshida, K. Kawata, Y. Fukuyama, Y. Nakanishi, “A particle swarm optimization for reactive power and voltage control considering voltage security assessment,” IEEE Transactions on Power Systems Vol.15 ,pp. 1232–1239,2000. [24] F. Van den Bergh, A.P. Engelbrecht, “A study of particle swarm optimization particle trajectories,” Information Sciences, Vol.176, pp. 2006 937–971 , 2006. [25] D.W. Van der Merwe, A.P. Engelbrecht, “Data clustering using particle swarm optimization,” Proceedings of the 2003 Congress on Evolutionary Computation pp.215–220,2003. [26] Y. Yang, M. Kamel, “Clustering ensemble using swarm intelligence,” in: Proceedings of the 2003 IEEE Swarm Intelligence Symposium, SIS’03, pp. 65–71, 2003. [27] L. J. Fogel, A. J. Owens and M.J. Walsh, “Artificial intelligence thorough simulated evolution,” John Wiley & Sons, Ltd, Chichester, U.K., pp.203, 1966. [28] D. B. Fogel,” Evolutionary Computations: Toward a New Philosophy of Machine Intelligence,” IEEE Press, New York, 1995. [29] W.M. Spears, K.A De Jong., T. Bäck, D.B. Fogel, and H. deGaris, “An overview of evolutionary computation,” Proceedings of the 1993 European Conference on Machine Learning. 1993. [30] D. B. Fogel, and J. W. Atmar, “Comparing genetic operators with Gaussian mutation in simulated evolutionary processes using linear systems,” Biological Cybernetics, Vol.63, pp.111- 114, 1990. [31] D. B. Fogel, and L. C. Stayton “On the effectiveness of crossover in simulated evolutionary optimization,” BioSystems, Vol. 32, No. 3, pp171-182, 1994. [32] A. Sebald, and J. Schlenzing, “Minimax design of neural net controllers for highly uncertain plants,” IEEE Transactions on Neural Networks, Vol. 5, No. 1, pp.73-82, 2000. [33] T. Back, G. Rudolph, and H. P. Schwefel, “Evolutionary programming and evolution strategies: Similarities and differences. Proceedings of the Second Annual Conference on Evolutionary Programming,” Evolutionary Programming Society, San Diego, CA , pp.11-22, 1993. [34] K. I. Tsai, C. C. Tsai, “Cascaded fuzzy control for air source heat pumps,” Proc. of the SICE Annual Conference 2010 (SICE 2010 in Taiwan), Taipei, Taiwan, August 2010. [35] J. S. Chiou, M. T. Liu, “Numerical simulation for fuzzy-PID controllers and helping EP reproduction with PSO hybrid algorithm, ” Simulation Modeling and Practice and Theory, vol. 17, pp.1555-1565, 2009. [36] K. I Tsai, C. C. Tsai, “PID and PI-PD temperature controllers design using DNA computing algorithm for oil-cooling machines, ” Proc. of the 11th (2011) International Conference on Automation Technology, Douliou, Yun Lin, Nov. 18-19, 2011. [37] A.K. Swain and A.S. Morris, “A novel hybrid evolutionary programming method for function optimization,” Proceedings of the 2000 Congress on Evolutionary Computation, vol. 1, pp. 699-705, 2000 [38] D. Mandal et al, “Optimal synthesis of array pattern for concentric circular antenna array using hybrid evolutionary programming,” International Journal of Research Trends in Engineering and Technology, vol. 3, no. 3, ACEEE, May 2010 [39] R. Roy, S. P. Ghoshal, ”Optimization of proportional-integral-derivative gains by evolutionary programming in fuzzy based automatic generation control”, Journal of Electrical Engineering, IE(I), Vol. 87, pp. 29-35, December 2006
摘要: 
本論文旨在針對熱泵乾燥機,使用粒子群演算法(PSO)及進化規劃演算法(EP)來設計單迴路PID及串級雙PID等兩種溫度控制策略及其在恆溫乾燥技術上的實際應用,用以達成快速收歛及最佳化控制的目的。第一種單迴路PID溫度控制策略使用離線PSO-EP演算法來搜尋最佳PID控制參數值,使系統響應快速追蹤至參考設定值。第二種溫度控制策略使用串級双PID控制器結合PSO-EP演算法除了有第一種溫度控制器優點外還進ㄧ步可以消弭溫度誤差並抵抗外部干擾。以上兩種控制法則均可推廣應用於熱泵乾燥機之溫度控制。電腦模擬與實驗測試結果皆顯示兩種由結合PSO-EP演算法與PID控制策略之溫度控制器皆可得到相當不錯的溫控成效與性能,而且串級双PID控制器可得到較快的反應時間與較小的穩態誤差。

This thesis presents methodologies and techniques to design and implement two PID temperature controllers for a water-source heat pump dryer using particle swarm optimization-evolutionary programming (PSO-EP) algorithm, in order to achieve fast tracking and performance optimization. The first temperature controller employs a single-loop PID control strategy whose three-term parameters are off-line tuned using the proposed PSO-EP algorithm, whereas the second temperature controller uses a cascaded PID structure whose two sets of three-term parameters are also off-line searched by the same PSO-EP algorithm. In comparison with the first temperature controller, the second temperature control strategy using the cascaded PID structure not only retains the benefits of the first controller but also has better properties of robustness and disturbances rejection. Simulations and experimental results are conducted to show the effectiveness and merits of both proposed controllers via set-point tracking and disturbance rejection, and, furthermore, the cascaded PID controller has a faster transient response and a less steady-state error.
URI: http://hdl.handle.net/11455/9142
其他識別: U0005-2108201301015500
Appears in Collections:電機工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.