Please use this identifier to cite or link to this item:
標題: 以石墨烯當導電層與阻障層用於矽通孔之電鍍填充
Using Graphene as Conducting Layer and Barrier Layer for Through Silicon Via Filling by Electroplating
作者: Shih-Cheng Chang
關鍵字: Graphene;Through silicon via;Nickel-Tungsten Alloy;Barrier Layer;Electroplating;石墨烯;矽通孔;鎳鎢合金;阻障層;電鍍
引用: 1. 龍文安,”半導體奈米技術”,五南圖書出版公司,第十一章,民國93年。 2. 羅正忠、張鼎張,“半導體製程技術導論”,台灣培生教育出版股份有限公司,民國98年。 3. 張勁燕,“VLSI概論”,五南圖書出版股份有限公司,民國97年。 4. 鍾文仁、陳佑任,“IC封裝製程與CAE應用”,全華科技圖書股份有限公司,民國94年。 5. L. W. Schaper, S. L. Burkett, S. Spiesshoefer, G. V. Vangara, Z. Rahman, and S. Polamreddy, “Architectural Implications and Process Development of 3-D VLSI Z-Axis Interconnects Using Through Silicon Vias”, IEEE Trans. Compon. Pack. Technol,.2005, 28, 356. 6. S. L. Burkett, X. Qiao, D. Temple, B. Stoner, and G. McGuire, “Advanced processing technique for through-wafer interconnects”, J. Vac. Sci. Technol. B, 2004, 22, 248. 7. P. Garrou, C. Bower, and P. Ramm, “Handbook of 3D Integration: Technology and Applications of 3D Integrated Circuits”, John Wiley & Sons Inc, 2008, Ch1, p4. 8. S. J. Koester, A. M. Young, R. R. Yu, S. Purushothaman, K.-N. Chen, D. C. La Tulipe, Jr. N. Rana, L. Shi, M. R. Wordeman, and E. J. Sprogis, “Wafer-level 3D integration technology”, IBM J. Res. Dev., 2008, 52, 571. 9. R. Beica, P. Siblerud, C. Sharbono, and M. Bernt, “Advanced Metallization for 3D Integration”, IEEE Xpolre, 2008, 212. 10. N. T. Nguyen, E Boellaard, N. P. Pham, V. G. Kutchoukov, G. Craciun, and P. M. Sarro, “Through-wafer copper electroplating for three-dimensional interconnects”, J Micromech. Microeng., 2002, 12, 395. 11. P. Garrou, “How Might 3D ICs Come Together ?”, Semiconductor International, 2008. 12. P. Dixit, L. Xu, J. Miao, J. H. L. Pang, and R. Preisser, “Mechanical and microstructural characterization of high aspect ratio through-wafer electroplated copper interconnects”, J. Mircromech. Microeng., 2007, 17, 1749. 13. T. R. Rosebrugh and W. L. Miller, “Mathematical Theory of the Change of Concentration at the Electrode, Brought about by Diffusion and by Chemical Reaction”, J. Phys. Chem., 1910, 14, 816. 14. J. J. Sun, K. Kondo, T, Okamura, S. Oh, M. Tomisaka, H, Yonemura, M. Hoshion, and K. Takahashi, “High-Aspect-Ratio Copper Via Filling Used for Three Dimensional Chip Stacking,” J. Electrochem. Soc., 2003, 150, 355. 15. K. Kondo, T. Yonezawa, D. Mikami, T. Okubo, Y. Taguchi, K. Takahashi, and D. P. Barkey, “High-Aspect-Ratio Copper-Via-Filling for Three-Dimensional Chip Stacking”, J. Electrochem. Soc., 2000, 152, H173. 16. N. V. Mandich, “Pulse and Pulse-Reverse electroplating”, Metal Finish., 2000, 98, 374. 17. L. Xu, P. Dixit, J. Miao, and J. H. L. Pang. “Through-wafer electroplated copper interconnect with ultrafine grains and high density of nanotwins”, Appl. Phys. Lett., 2007, 90, 033111. 18. A. J. Bard and L. R. Faulkner, “Electrochemical Methodes Fundamentals and Applications”, John-Worly & Sons Inc., New York, USA, 2001. 19. W. P. Dow, D. H. Liu, C. W. Lu, C. H. Chen, J. J. Yan, and S. M. Huang, “Through Hole Filling by Copper Electroplating Using Single Organic Additive,” Electrochem. Solid-State Lett., 2011, 14, D13. 20. M. Georgiadou, D. Veyret, R. L. Sani, and R. C. Alkire, “Simulation of Shape Evolution during Electrodeposition of Copper in the Presence of Additive”, J. Electrochem. Soc., 2001, 148, C54. 21. J. W. Gallawaya and A. C. West, “The effect of acid on superconformal filling in 100 nm trenches,” J. Vac. Sci. Technol. B, 2009, 27, 2200. 22. Z. Nagy, J. P. blaudezu, N. C. HUNG, L. A. Curtiss, and D. J. Zurawski, “Chloride Ion Catalysis of the Copper Deposition Reaction”, J. Electrochem. Soc., 1995, 142, L87. 23. D. M. Soares, S. Wasle, K. G. Weil, and K. Doblhofer, “Copper Ion Reduction Catalyzed by Chloride Ions”, J. Electroanal. Chem., 2002, 532, 353. 24. W. P. Dow and C. W. Liu, “Evaluating the Filling Performance of a Copper Plating Formila Using a Simple Galvanostat Method”, J. Electrochem. Soc., 2006,153, L190. 25. W. P. Dow, M. Y. Yen, C. W. Liu, and C. C. Huang, “Enhancement of filling performance of a copper plating formula at low chloride concectration”, Electrochim. Acta., 2008, 53, 3610. 26. M. Yokoi, S. Konishi, and T. Hayaashi, “Adsorption Behavior of Polyoxyenthylene glycol on the Copper Surface in an Acid Copper Sulphate Bath”, Denki Kagaku., 1984, 52, 218. 27. J. J. KeIly and A. C. Wesr, “Copper Deposition in the Presence of Polyethylene Glycol”, J. Electrochem. Soc., 1998, 145, 3472. 28. Z. V. Feng and A. A. Gewirth, “Inhibition Due to the Interation of polyethylene Glycol, Chloride, and Copper in plating baths:A Surface Enhanced Raman Study”, J. Phys. Chem. B, 2003, 107, 9415. 29. W. P. Dow, M. Y. Yen, W. B. Lin, and S. W. Ho, “Influence of Molecular Weight of Polyethylene Glycol on Microvia Filling by Copper Electroplating”, J. Electrochem. Soc., 2005,152, C769. 30. S. C. Chang, J. M. Shieha, K. C. Lin, and B. T. Dai, “Wetting Effect on Gap Filling Submicron Damascene by an Electrolyte Free of Levelers”, J. Vac. Sci. Technol. B, 2002, 20, C1311. 31. N. Zukauskaite and A. Malinauskas, “Electroctatlysis by a Brightener in Copper Electrodeposition”, Sov. Electrochem., 1989, 24, 2564. 32. J. P. Healy and D. Pletcher, “The Chemistry of the Additives in an Acid Copper Electroplating Bath PartⅡ. The Instability of 4,5-Dithiaoctane-1,8-Disulphonic Acid in the Bath on Open Circuit”, J. Electroanal. Chem., 1992, 338, 167. 33. E. E. Farndon, F. C. Walsh, and S. A. Campbell, “Effect of Thiourea Benzotriazole and 4,5-Dithiaoctane-1,8-Disulphonic Acid on the Kinetics of Copper Deposition form Dilute Acid Sulphate Solutions”, J. Appl. Electrochem., 1995, 25, 574. 34. A. Frank and A. J. Bard, “The Decomposition of the Sulfonate Additive Sulfopropyl Sulfonate in Acid Copper Electroplating Chemistries”, J. Electrochem. Soc., 2003, 150, C244. 35. E. Mattsson and J. O. M. Bockris, “Galvanostic Studiew of the Kinetic of Deposition and Dissolution in the Copper + Copper Sulphate System”, Trans. Farady Soc., 1959, 55, C1586. 36. W. P. Dow, H. S. Huang, M. Y. Yen, and H. H. Chen, “Roles of Chloride Ion in Microvia Filling by Copper Electrodeposition”, J. Electrochem. Soc., 2005, 152, C77. 37. W. P. Dow, Y. D. Chiu, and M. Y. Yen, “Microvia Filling by Cu Electroplating Over a Au Seed Layer Modified by a Disulfide”, J. Electrochem. Soc., 2009, 156, D155. 38. H. L. Tu, P. Y. Yen, H. L. Wu, S. Chen, W. Vogel, S. L. Yau, and W. P. Dow, “In Situ STM of 3-Mercaptopropanesulfonate Adsorbed on Pt(111) Electrode and Its Effect on the Electrodeposition of Copper”, J. Electrochem. Soc., 2010, 157, D206. 39. G. K. Gomma, “Effect of azole compounds on corrosion of copper in acid medium”, Mater. Chem. Phys., 1998, 56, C27. 40. S. K. Kim, D. Josell, and T. P. Moffat, “Cationic Surfactants for the Control of Overfill Bumps in Cu Superfilling”, J. Electrochem. Soc., 2006, 153, C826. 41. J. J. Kelly and A. C. West, “Leveling of 200 nm Features by Organic Additives”, Electrochem. Solid-State Lett., 1999, 2, C561. 42. P. Taephaisitphongse, Y. Cao, and A. C. West, “Electrochemical and Fill studies of a Multicomponent Additive Package for Copper Deposition”, J. Electrochem. Soc., 2001, 148, C492. 43. K. Kondo, N. Yamakawa, Z. Tanaka, and K.Hayashi, “Copper damascene electrodeposition and additives”, J. Electrochem. Soc., 2003, 559, C137. 44. W. P. Dow, H. S. Huang, M. Y. Yen, and H. C.Huang, “Influence of Convection Dependent Adsorption of Additives on Microvia Filling by Copper Electroplating”, J. Electrochem. Soc., 2005, 152, C425. 45. M. J. Desilva and Y. S. Diamand, “A Novel Seed Layer scheme to Protect Catalytic Surface for Electroless Deposition”, J. Electrochem. Soc., 1996, 143, 3512. 46. H. H. Hsu, C. C. Hsie, M. H. Chen, S. J. Lin, and J. W. Yeh, “Displacement Activation of Tantalum Diffusion Barrier Layer for Electroless Copper Deposition”, J. Electrochem. Soc., 2001, 123, 348. 47. B. K. W. Baylis, A. Busuttil, N. E. Hedgecock, and M. Schlesinger, “Tin(IV) Chloride Solution as a Sensitizer in Phtoselective Metal Deposition”, J. Electrochem. Soc., 1976, 123, 348. 48. W.C. Bigelow, D.L. Pickett, and W.A. Zisman, “Oleophobic Monolayers:I. Films Adsorbed from Solution in Non-Polar Liquids”, J.Colloid Sci., 1946, 1, 513. 49. A. Ulman, “Formation and Structure of Self-Assembles Monolayers”, Chem. Rev., 1996, 96, 1553. 50. J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology”, Chem. Rev., 2005, 105, 1103. 51. K. Geim and K. S. Novoselov, “The rise of graphene”, Nat.Mater. , 2007, 6, 183. 52. H. W. Kroto, J. R. Heath, S. C. O''Brien, R. F. Curl , and R. E. Smalley, “C60: Buckminsterfullerene”, Nature, 1985, 318, 162. 53. S. Iijima, “Helical microtubules of graphitic carbon”, Nature, 1991, 354, 56. 54. 莊鎮宇,“石墨烯簡介與熱裂解化學氣相合成方法合成石墨烯的近期發展”,物理專文,2011。 55. 洪偉修教授,“世界上最薄的材料-石墨烯(PDF)”,98康熹化學報報 (康熹文化事業股份有限公司),2009-11,11月號。 56. C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene”, Science, 2008, 321, 385. 57. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “ Fine Structure Constant Defines Visual Transparency of Graphene”, Science, 2008, 320, 1308. 58. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, ” Superior Thermal Conductivity of Single-Layer Graphene”, Nano Lett., 2008, 8, 902. 59. 黃承鈞、黃淑娟,“石墨烯材料發展與應用趨勢”,工業材料,2012。 60. 莊鎮宇,“石墨烯製備與應用技術研習班”,ITRC,2013,10月。 61. Z.Yan, Z. Peng, G. Casillas, J. Lin, C. Xiang, H. Zhou, Y. Yang, G. Ruan, A.R.O. Raji, E. L. G. Samuel, R. H. Hauge, M. J. Yacaman, and James M. Tour,” Rebar Graphene”, ACS Nano, 2014, 8, 5061. 62. L. Yu, Y. Lim, J. H. Han, K. Kim, J. Y. Kim,S. Y. Choi, and K. Shin, “A graphene oxide oxygen barrier film deposited via a self-assembly coating method”, Synth. Met., 2012, 162, 710. 63. B. H. Hong, presentation at “Graphene 2020 Opportunities For Europe”, Rrussels, 2011. 64. 65. H. W. Tien,Y. L. Huang, S. Y. Yang, J. Y. Wang, and C. C. Ma, “The production of graphene nanosheets decorated with silver nanoparticles for use in transparent, conductive films”, Carbon, 2011, 49, 1550. 66. B. Z. Jang, C. Liu, D. Neff, Z. Yu, M. C. Wang, W. Xiong, and A. Zhamu, ”Graphene Surface-Enabled Lithium Ion-Exchanging Cells:Next-Generation High-Power Energy Storage Devices”, Nano Lett., 2011, 11, 3785. 67. S. Y. Yang, W.N. Lin, Y. L. Huang, H. W. Tien, J. Y. Wang, C.C. Ma, S. M. Li, and Y.S. Wang, ”Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites”, Carbon, 2011, 49, 793. 68. S.Y. Yang, K.H. Chang, Y. F. Lee, C.C. Ma, and C. C. Hu, ”Constructing a hierarchical graphene–carbon nanotube architecture for enhancing exposure of graphene and electrochemical activity of Pt nanoclusters”, Electrochem. Commun., 2010 , 12, 1206. 69. S. Y. Yang, K. H. Chang, H. W. Tien, Y. F. Lee, S. M. Li, Y. S. Wang, J. Y. Wang, C. C. Ma, and C. C. Hu, “Design and tailoring of a hierarchical graphene-carbon nanotube architecture for supercapacitors”, J. Mater. Chem., 2011, 21, 2374. 70. 71. 72. H. Kim, A. A. Abdala, and C. W. Macosko, “Graphene/Polymer Nanocomposites”, Macromolecules, 2010, 43,6515. 73. F. Ren, S. J. Pearton, J. Kim, and H. Y. Kim, “Graphene-bades metal diffusion barrier”, International Patent, WO 2013/096273 A1. 74. M. Schriver, W. Regan, W. J. Gannett, A. M. Zaniewski, M. F. Crommie, and A. Zettl, ”Graphene as a Long-Term Metal Oxidation Barrier:Worse Than Nothing”, ACS Nano, 2013, 7, 5763. 75. J. H. Lee, E. K. Lee, W. J. Joo, Y. Jang, B. S. Kim, J. Y. Lim, S. H. Choi, S. Joon Ahn, J. R. Ahn, M. H. Park, C.W. Yang, B. L. Choi, S. W. Hwang, and D. Whang, ”Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium”, Science, 2014, 344, 286. 76. K. Jagannadham, ”Thermal Conductivity of Indium–Graphene and Indium-Gallium–Graphene Composites”, J. Electron. Mater., 2011, 40, 1. 77. M. Nihei, A. Kawabata, T. Murakami, M. Sato, and N. Yokoyama, “Improved Thermal Conductivity by Vertical Graphene Contact Formation for Thermal TSV”, IEEE, 2012. 78. M. Nehei, “CNT/Graphene Technologies for Advanced Interconnects and TSVs,” SEMATECH Symposium Taiwan, 2012, Hsinchu. 79. S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Özyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes”, Nature Nanotechnol., 2010 , 5, 574. 80. 蘇清源,“石墨烯氧化物之特性與應用前景”,物理專文,2011,P.163。 81. C. H. Lucas, A.J. López-Peinado, J. D. López-González, M.L. Rojas-Cervantes, and R.M. Martín-Aranda, “Study of oxygen-containing groups in a series of graphite oxides: Physical and chemical characterization”, Carbon, 1995, 33, 1585. 82. A. Bagri, C. Mattevi, M. Acik, Y.J. Chabal, M. Chhowalla, and C.B. Shenoy, “Structural evolution during the reduction of chemically derived graphene oxide”, Nature Chem., 2010, 2, 581. 83. J. Ito, J. Nakamura, and A. Natori, “Semiconducting nature of the oxygen-adsorbed graphene sheet”, J. Appl. Phys., 2008, 103, 113721. 84. W. S. Hummers Jr. and R. E. Offeman, “Preparation of Graphitic Oxide”, J. Am. Chem. Soc., 1958, 80, 1339. 85. Y. Xu, H. Bai, G. Lu, C. Li, and G. Shi, “Flexible Graphene Films via the Filtration of Water-Soluble Noncovalent Functionalized Graphene Sheets”, J. Am. Chem. Soc., 2008, 130, 5856. 86. D. C. Marcaon, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, and J. M. Tour, ”Improved Synthesis of Graphene Oxide”, ACS Nano, 2010, 4, 8. 87. J. Chen, B. Yao, C. Li, and G. Shi, ”An Improved Hummers Method for Eco-friendly Synthesis of Graphene Oxide”, Carbon, 2013, 64, 225. 88. L. Jiao, L. Zhang, X. Wang, G. Diankov, and H. Dai, “Narrow graphene nanoribbons from carbon nanotubes”, Nature Lett., 2009, 458, 877. 89. Z.S. Wu, W. R., L. Gao, B. Liu, C. Jiang, and H. M. Cheng, “ Synthesis of high-quality graphene with a pre-determined number of layers”, Carbon, 2009, 47, 493. 90. H. C. Schniepp , J. L. Li , M. J. McAllister , H. Sai , M. H. Alonso , D. H. Adamson , R. K. Prud''homme , R. Car , D. A. Saville, and I. A. Aksay. “Functionalized single graphene sheets derived from splitting graphite oxide”. J. Phys. Chem., 2006, 110, 8535. 91. M. J. McAllister , J. L. Li , D. H. Adamson , H. C. Schniepp , A. A. Abdala , J. Liu , M. H. Alonso , D. L. Milius , R. Car , R. K. Prud''homme, and I. A. Aksay, “Single sheet functionalized graphene by oxidation and thermal expansion of graphite”. Chem. Mater., 2007, 19, 4396. 92. X. Li , H. Wang , J. T. Robinson , H. Sanchez , G. Diankov, and H. Dai, “Simultaneous nitrogen doping and reduction of grapheme oxide”. J. Am. Chem. Soc., 2009, 131, 15939. 93. S. Pei and H. M. Cheng, “The reduction of graphene oxide”, Carbon, 2012, 50, 3210. 94. C. G. Navarro , R. T. Weitz , A. M. Bittner , M. Scolari , A. Mews , M. Burghard, and K. Kern, “Electronic transport properties of individual chemically reduced graphene oxide sheets”. Nano Lett., 2007, 7, 3499. 95. H. J. Shin, K. K. Kim, A. Benayad, S. M. Yoon, H. K. Park, I. S. Jung, M. H. Jin, H. K.Jeong, J. M. Kim, J.Y. Choi, and Y. H. Lee, “Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance”. Adv. Funct. Mater., 2009, 19, 1987. 96. M. Periasamy and M. Thirumalaikumar, “Methods of enhancement of reactivity and selectivity of sodium borohydride for applications in organic synthesis”. J Organo. Metallic. Chem, 2000, 609, 137. 97. S. Pei, J. Zhao, J. Du, W. Ren, and H. M. Cheng, “ Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids”. Carbon, 2010, 48, 4466. 98. M. J. Fernández-Merino, L. Guardia, J. I. Paredes, S. Villar-Rodil, P. Solís-Fernández, A. Martínez-Alonso, and J. M. D. Tascón, “Vitamin C is an ideal substitute for hydrazine in the reduction of grapheme oxide suspensions”. J. Phys. Chem. C, 2010, 114, 6426. 99. M. Zhou, Y. Wang, Y. Zhai, J. Zhai, W.Ren, F. Wang, and S. Dong, “Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films”. Chem. Euro J, 2009, 15, 6116. 100. S. Dubin, S. Gilje, K. Wang, V. C. Tung, K. Cha, A. S. Hall, J. Farrar, R. Varshneya, Y. Yang, and R. B. Kaner, “A one-step solvothermal reduction method for producing reduced graphene oxide dispersions in organic solvents”. ACS Nano, 2010, 4, 3845. 101. Q. Zhuo, Y. Ma, J. Gao, P. Zhang, Y. Xia, Y. Tian, X. Sun, J. Zhong, and X. Sun, “Facile Synthesis of Graphene/Metal Nanoparticle Composites via Self-Catalysis Reduction at Room Temperature”, Inorg. Chem., 2013, 52, 3141. 102. W. W. Liua and J. N. Wang, “Direct exfoliation of graphene in organic solvents with addition of NaOH”, Chem.Comm., 2011, 47, 6888. 103. S. V. Kumar, N.M. Huang, H.N. Lim, A.R. Marlinda, I. Harrison, and C.H. Chia, “One-step size-controlled synthesis of functional graphene oxide/silver nanocomposites at room temperature”, Chem. Eng. J., 2013, 219, 217. 104. H. W. Tien, S. T. Hsiao, W. H. Liao, Y. H. Yu, F. C. Lin, Y. S. Wang, S. M. Li, and C. C. Ma, “Using self-assembly to prepare a graphene-silver nanowire hybrid film that is transparent and electrically conductive”, Carbon, 2013, 58, 198. 105. 汪建民,“材料分析”,第三版,第五章,中國材料科學學會,民國93年。 106. 107. H. W. Tien, S. T. Hsiao, W. H. Liao, Y. H. Yu, F. C. Lin, Y. S. Wang, S. M. Li, and C. C. Ma, “Using self-assembly to prepare a graphene-silver nanowire hybrid film that is transparent and electrically conductive”, Carbon, 2013, 58, 198. 108. H. Yang, C. Shan, F. Li, D. Han, Q. Zhang, and L. Niu, “Covalent functionalization of polydisperse chemically-converted grapheme sheets with amine-terminated ionic liquid”, Chem. Commun., 2009, 3880. 109. Y. Xu, K. Sheng, C. Li, and G. Shi, “Highly conductive chemically converted graphene prepared from mildly oxidized graphene oxide”, J. Mater. Chem., 2011, 21, 7376. 110. K. Bhowmik, S. Pramanik, S. K. Medda, and G. De, “Covalently functionalized reduced graphene oxide by organically modified silica: a facile synthesis of electrically conducting black coatings on glass”, J. Mater. Chem., 2012, 22, 24690. 111. J. Chen, R. L. Shepherd, J. M. Razal, X. Huang, W. Zhang, J. Zhao, A. T. Harris, S. Wang, A. I. Minett, and H. Zhang, “Scalable Solid-Template Reduction for Designed Reduced Graphene Oxide Architectures”, Appl. Mater. Interfaces, 2013, 5, 7676. 112. E. Kymakis, E. Stratakis, M.M. Stylianakis, E. Koudoumas, and C. Fotakis, “Spin coated graphene films as the transparent electrode in organic photovoltaic devices”, Thin Solid Films, 2011,520, 1238. 113. I. K. Moon, J. I. Kim, H. Lee, K. Hur, W. Chun Kim, and H. Lee, “2D Graphene Oxide Nanosheets as an Adhesive Over-Coating Layer for Flexible Transparent Conductive Electrodes”, Scientific Reports, 2013, 3, 1112. 114. J. Wang, M. Liang, Y. Fang, T. Qiu, J. Zhang, and L. Zhi, “Rod-Coating: Towards Large-Area Fabrication of Uniform Reduced Graphene Oxide Films for Flexible Touch Screens”, Adv. Mater., 2012, 24, 2874. 115. J. Ou, J. Wang, S. Liu, B. Mu, J. Ren, H. Wang, and S. Yang, “Tribology Study of Reduced Graphene Oxide Sheets on Silicon Substrate Synthesized via Covalent Assembly”, Langmuir, 2010, 26, 15830. 116. Y. Mi, Z. Wang, X. Liu, S. Yang, H. Wang, J. Ou, Z. Li, and J. Wang, “A simple and feasible in-situ reduction route for preparation of grapheme lubricant films applied to a variety of substrates”, J. Mater. Chem., 2012, 22, 8036. 117. S. Park, D. A.Dikin, S. Nguyen, and R. Ruoff, “Graphene Oxide Sheets Chemically Cross-Linked by Polyallylamine”, J. Phys. Chem. C, 2009, 113, 36. 118. H. Liu, T. Kuila, N. H. Kim, B. C. Kud, and J. H. Lee, “In situ synthesis of the reduced graphene oxide–polyethyleneimine composite and its gas barrier properties”, J. Mater. Chem. A, 2013, 1, 3739. 119. R. M. Pasternack, S. R. Amy, and Y. J. Chabal, “Attachment of 3-(Aminopropyl)triethoxysilane on Silicon Oxide Surfaces: Dependence on Solution Temperature”, Langmuir , 2008, 24, 12963. 120. A. H. Bae, S. I. Son, J. H. Lee, T. S. Hwang, and J. S. Oh, “Resin Plating Method Using Graphene Thin Layer”, United States Patent, US 2011/0284388 A1. 121. Q. Wang, J. Zhang, S. Yuan, and X. Li, “Tunnel effect causing nonlinear current in few-layer grapheme”, Appl. Phys. Lett., 2012, 101, 063503. 122., P55. 123. A. M. Caro, S. Armini, O. Richard, G. Maes, G. Borghs, C. M. Whelan, and Youssef Travaly, “Bottom-Up Engineering of Subnanometer Copper Diffusion Barriers Using NH2-Derived Self-Assembled Monolayers”, Adv. Funct. Mater. 2010, 20, 1125. 124. A. Ikeda, A. Sakamoto, R. Hattori, and Y. Kuroki, “Electroless Ni–B plating on SiO2 with 3-aminopropyl-triethoxysilane as a barrier layer against Cu diffusion for through-Si via interconnections in a 3-dimensional multi-chip package”, Thin Solid Films, 2009, 517, 1740. 125. 黃馨嫚,碩士論文,”填充矽通孔之新穎電鍍鎳鎢合金配方”, 國立中興大學,一百零一年。 126. S. Wu, Z. Yin, Q. He, G. Lu, Q. Yan, and H. Zhang, “Nucleation Mechanism of Electrochemical Deposition of Cu on Reduced Graphene Oxide Electrodes”, J. Phys. Chem C, 2011, 115, 15973. 127. M. Carano, W. P. Dow, F. Polakovic, and C. E. Thorn, “The Use of a Chemical Fixing Agent with Colloidal Graphite for Producing High Reliability Throughvias and Microvias”, CircuiTree, 1999, 12, 120. 128. D. Grujicic and B. Pesic, “Electrodeposition of copper: the nucleation mechanisms”, Electrochimi. Acta, 2002, 47,2901 129. 沈紹平,碩士論文,“填充矽通孔之新穎電鍍銅配方”,國立中興大學,九十八年。 130. 胡淑惠,碩士論文,“利用奈米碳管進行直接電鍍於非導體表面之研究”,國立清華大學,九十七年。

Three-dimensional (3D) chip stacking is a major focus in recent research and development of microelectronics, MEMS, and MOEMS technology. Through silicon vias (TSV) play a key role in the 3D IC chip stacking connections. A main advantage of TSV is to make the shortest chip-to-chip vertical interconnection, which allows for size reduction of the chip and reducing signal transmission delay. Electrodeposition plays an important role in TSV development, especially copper electrodeposition, which is a critical technology and generally used in the 3D chip packaging.
Graphene materials, including single layer and multi layer graphene platelet, have recently drawn extensive attention due to their outstanding electrical and thermal properties. Reduction of graphene oxide (GO) is a method for preparaing the graphene film. Since GO has a large amount of oxide functional groups, it can be well dispersed in several solvents and enable it to be coated on a substrate by a chemaical grafting method using a wet process.
In TSV technology, the thermo-mechanical fatigue may lead to failure in the TSV interconnects, because the coefficient of thermal expansion (CTE) of copper is much higher than that of silicon. The package materials with different CTEs will induce large stresses at interfaces. To overcome this problem, we should choose tungsten to substitute copper. However, tungsten cannot be directly plated from an aqueous electrolytes but can be deposited by chemical vapor deposition or physical vapor deposition. Fortunately, tungsten it can be co-deposited with iron group metals. Alternatively, since the CTE of graphene is closer to silicon than copper, we choose graphene sheets to substitute copper seed layer.
In our research, we reduce the procedure of TSV fabrication using a wet process to substitute barrier and seed layer with graphene, and electrodeposition with Ni-W alloy to make a copper-free process.
其他識別: U0005-1107201413080000
Rights: 不同意授權瀏覽/列印電子全文服務
Appears in Collections:化學工程學系所

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-103-7101065005-1.pdf23.44 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.