Please use this identifier to cite or link to this item:
標題: 二氧化碳及甲烷在高分子複合薄膜中之滲透係數定量研究
The Quantification of Permeability of CO2 and CH4 in Polymer Composite Membranes
作者: Kuan-Tung Lin
關鍵字: Polymer Composite Membranes;Mathematical model;Permeability;高分子複合薄膜;數值模型;滲透係數
引用: [1] 胡蒨傑 , 魏大欽 ,21 世紀的新森林-氣體分離薄膜,科學發展429(2008)32-37 [2] S. R. Reijerkerk, M. H. Knoef, K. Nijmeijer, M. Wessling, Poly(ethylene glycol) and poly(dimethyl siloxane): Combining their advantages into efficient CO2 gas separation membranes. Journal of Membrane Science 352 (2010) 126-135. [3] R. P. Singh, D. R. Heldman, Membrane separation, Introduction to Food Engineering (Fifth Edition), 2014, Pages 645-674 [3] C. S. Bickel, W. J. Koros, Improvement of CO2/CH4 separation characteristics of polyimides by chemical crosslinking. Journal of Membrane Science 155 (1999) 145-154. [5] 翁子翔, 高分子薄膜與多層複合薄膜氣體分離特性之研究,中興大學環境工程研究所,博士學位論文(2010)。 [6] P. Pandey, R. S. Chauhan, Membrane for gas separation, Progress in Polymer Science 26 (2001) 853-893. [7] R. Soria, Overview on industrial membrances, Catalysis Today 25(1995)285-290 [8] C. A. Scholes, S. E. Kentish, G. W. Stevens, Carbon dioxide separation through polymeric membrane systems for flue gas applications. Recent Patents on Chemical Engineering 1 (2008) 52-66. [9] E. Favre, Polymeric membranes for gas separation , Comprehensive Membrane Science and Engineering, Volume 2, (2010)155-212 [10] 蕭盛文, PMMA氣體分離膜的物理老化行為之探討,中原大學化學工程學系,碩士學位論文,(2006) [11] Y. Huan , D. R. Paul, Physical aging of thin glassy polymer ?lms monitored by gas permeability. Polymer, 45, 8377, (2004). [12] L. M. Robeson, Correlation of separation factor versus permeability for polymeric membranes. Journal of Membrane Science 62 (1991) 165-185. [13] L. M. Robeson, The upper bound revisited. Journal of Membrane Science 320 (2008) 390-400. [14] P. Bernardo, E. Drioli, G. Golemme, Membrane gas separation: A review/state of the art, American Chemical Society 48 (2009) 4638–4663 [15] J. K. Adewolea, A. L. Ahmada, S. Ismail , C. P. Leoa, Current challenges in membrane separation of CO2 from natural gas: A review, International Journal of Greenhouse Gas Control 17 (2013) 46–65 [16] T. S. Chunga , J. J. Shieha, W. Y. Laua, M. P. Srinivasana, D. R. Paul, Fabrication of multi-layer composite hollow fiber membranes for gas separation, Journal of Membrane Science(1999)211-225 [17] X. Ren , J. Ren , H. Li , S. Feng , M. Deng , Poly(amide-6-b-ethylene oxide)multilayer composite membrane for carbon dioxide separation, International Journal of Greenhouse Gas Control 8(2012)111-120 [18] L. Zhang , G. He , W. Zhao, F. Nie, X. Li, M. Tan, Studies on the coating layer in a PTFPMS/PEI composite membrane for gaseous separation, Journal of Membrane Science 371(2011)141-147 [19] J. Peter, K. V. Peinemann, Multilayer composite membranes for gas separation based on crosslinked PTMSP gutter layer and partially crosslinked Matrimid? 5218 selective layer, Journal of Membrane Science 340 (2009) 62–72. [20] A. Kargari, A. A. Shamsabadi, M. B. Babaheidari, Influence of coating conditions on the H2 separation performance from H2/CH4 gas mixtures by the PDMS/PEI composite membrane, International Journal of Hydrogen Energy 39 (2014) 6588–6597. [21] T. Johnson, S. Thomas, Nitrogen/Oxygen permeability of natural rubber, epoxidised natural rubber and natural rubber/epoxidised natural rubber blends, Polymer 40 (1999) 3223–3228. [22] T. H. Weng , H. H. Tseng , M. Y. Wey ,Preparation and characterization of PPSU/PBNPI blend membrane for hydrogen separation, International Journal of Hydrogen Energy 33(2008)4178-4182 [23] P. Scovazzo, D. Havard, M. McShea, S. Mixon, D. Morgan, Long-term, continuous mixed-gas dry fed CO2/CH4 and CO2/N2 separation performance and selectivities for room temperature ionic liquid membranes, Journal of Membrane Science 327 (2009) 41–48. [24] P. Uchytil , J. Schauer, R. Petrychkovych, K. Setnickova, S. Y. Suen, Ionic liquid membranes for carbon dioxide–methane separation, Journal of Membrane Science 383 (2011) 262– 271. [25] L. C. Tom?, D. Mecerreyes, Carmen S. R. Freire, Lu?s Paulo N. Rebelo, I. M. Marrucho, Pyrrolidinium-based polymeric ionic liquid materials: New perspectives for CO2 separation membrane, Journal of Membrane Science 428(2013)260-266. [26]羅雅眉, 雙層及三層複合薄膜應用於二氧化碳及甲烷分離之研究,中興大學化學工程學系,碩士學位論文,(2014) [27] A. F. Ismail, T. D. Kusworo, A. Mustafa, H. Hasbullah, Understanding the solution-diffusion mechanism in gas separation membrane for engineering students,(2005) [28] S.I. Sandler, Chemical, biochemical, and engineering thermodynamics ,Wiley Asia Student Edition [29] 傅左籐, 以對應狀態處理非極性流體之蒸汽壓和黏度,台北科技大學化學工程系,碩士班學位論文,(2003) [30] J.W. Tester, M. Modell, Thermodynamics and its Applications, 3rd ed., Prentice Hall, 1999 [31] A. Luis, G. Forero, A. Jorge, J. Velasquez, A modified Patel-Teja cubic equation of state. Part II: Parameters for polar substances and its mixtures, Fluid Phase Equilibria 364 (2014) 75-87 [32] C. H. Twu, J. E. Coon, J. R. Cunningham, A new generalized alpha function for a cubic equation of state Part 2. Redlich-Kwong equation, Fluid Phase Equilibria 105(1995) 61-69 [33] A. Luis, G. Forero, A. Jorge, J. Velasquez, A modified Patel-Teja cubic equation of state: Part I - Generalized model for gases and hydrocarbons, Fluid Phase Equilibria 342 (2013) 8-22 [34]K.S. Pitzer, D.Z. Curl, R.F. Huggins, The volumetric and thermodynamic properties of fluids. II.compressibility factor,vapor pressure and entropy of vaporization, J Am Chem Soc 77(1955)3433–3440
本研究主要是建立三種簡易的數值滲透模型,分別為Peng-Robinson equation、Redlich-Kwong equation以及Patel-Teja equation,其中數值模型包括所有可能有關的物理/化學因子寫入成為參數,然後和二氧化碳及甲烷經高分子複合薄膜滲透的實驗數據進行擬合,進而量化出二氧化碳及甲烷氣體分子在薄膜中的滲透係數。所使用的薄膜是由橡膠態的聚二甲基矽氧烷(Polydimethylsiloxanes, PDMS)分別與玻璃態高分子聚醚?(Polyether sulfones, PES)、聚苯乙烯(Polystyrene, PS)以及醋酸纖維素(Cellulose acetate, CA)所製備不同厚度比的複合型高分子薄膜。由模擬結果得知,當PDMS於高分子複合膜的厚度增加,二氧化碳及甲烷在複合型高分子薄膜中的滲透係數也有增加的趨勢,並且將結果與羅雅眉, 2014所計算的結果比較並且討論。比較結果顯示量化的滲透係數差異不大,而本模型提供了具有理論基礎且較便利的方法量化出滲透係數。

In this research, three simple numerical permeation models were developed, including Peng-Robinson equation、Redlich-Kwong equation and Patel-Teja equation, these models consist of relevant physicochemical factors. By curve-fitting with experimental data of permeation of carbon dioxide and methane through composite polymer membranes , the quantification of gas permeation coefficient could be got.
The different thickness ratio of composite membranes were prepared from polydimethylsiloxanes(PDMS) and glassy polymer including polyether sulfone(PES)、polystyrene(PS) and cellulose acetate(CA).
The results show that the gas permeability of carbon dioxide(CO2) and methane(CH4) increases as the PDMS/glassy polymer composite membranes thickness ratio increases. There is no apparent deviation with reported data(Luo,2014). These models successfully provide a convenient method based on theoretical basis to quantify the permeability coefficient.
其他識別: U0005-2811201416175167
Rights: 同意授權瀏覽/列印電子全文服務,2017-08-31起公開。
Appears in Collections:化學工程學系所

Files in This Item:
File SizeFormat Existing users please Login
nchu-103-7101065017-1.pdf3.27 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.