Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91589
標題: 氧化性化學機械研磨液回收製備銀/二氧化矽複合材料之研究
Study on Synthesis of Silver/ Silica Composite Material from Recover of Oxide Chemical Mechanical Polishing Slurry Waste
作者: Po-Ting Lin
林柏廷
關鍵字: oxide CMP slurry waste;ethylene glycol;ultra-sonic;Ag / SiO2 composite materials;synthesis;化學機械研磨廢液;乙二醇;超音波;銀/二氧化矽複合材料;合成
引用: [1] 莊順興,王毓正,游勝傑,陳筱華,吳依芸,謝明昌,譚嘉忠,我國水回收及再生利用法規評析與推動建議,工業污染防治(2009), 第112期, pp. 107-121. [2] 經建會97.09.04, 永續能源政策綱領-節能減碳行動方案, http://web3.moeaboe.gov.tw/ECW/meeting98/content/wHandMenuFile.ashx?menu_id=1432 [3] 半導體產業背景, http://nccur.lib.nccu.edu.tw/bitstream/140.119/34331/7/93291207.pdf [4] P. Zantyea, A. Kumara, A. Sikderb,Chemical Mechanical Planarization for Microelectronics Applications, Materials Science and Engineering (2004),Vol. 45 pp.89–220. [5] H. Xiao, Chapter 12 Chemical Mechanical Polishing , http://www2.austin.cc.tx.us/HongXiao/Book.htm [6] Introduction of Chemical Mechanical Polishing, http://www.phys.nchu.edu.tw/files_news/seminar20121005.pdf [7] Slurry Design Evolution, http://www.entrepix.com/docs/papers-and-presentations/CAMP2012-Rhoades-Slurry-Design.pdf [8] 陳炤彰, 謝啟祥, 研磨液特性於化學機械平坦化之探討, 機械月刊期(2010), 36卷, 11期, pp.88-98. [9] 化學機械研磨廢水相關處理技術http://ebooks.lib.ntu.edu.tw/1_file/moeaidb/012537/a03b025.pdf [10] Y. Kang, B. Kang , J. Park, Effect of Slurry pH on Poly Silicon CMP, International Conference on Planarization, CMP Technology(2007), pp. 25 – 27. [11] 郭文通, 半導體業晶背研磨(Backside Grinding)廢水的矽粉回收及水資源再利用, http://www.asip.org.tw/userfiles/file/2011/Hsinchu/20111013-2.pdf [12] J. Hsu, Y. Wann, I. Pai, CMP Oxide Slurry Recycle System Implementation, International Symposium on Semiconductor Manufacturing (2010), Vol. 67, pp.1-3. [13] X. Jiang , S. Chen, C. Mao, Synthesis of Ag/SiO2 nanocomposite material by adsorption phase nanoreactor technique, Colloids and Surfaces A (2008), Vol. 320, pp.104–110. [14] 奈米科技漫談, http://140.127.53.222/lib/files/nano1.ppt [15] C. Kim, S. Yi, Synthesis and Characterization of Silver-Silica Heterogeneous Nanocomposite Particles by an Alcohol Reducing Method, Journal of Ceramic Processing Research (2009),Vol. 10, No. 4, pp. 462-468. [16] A. Gedanken, Sonochemistry and its Application to Nanochemistry, Current Science (2003), Vol. 85, pp. 12-25. [17] M. Ashokkumar, F. Grieser, Sonochemical Preparation of Colloids, http://sono.chemistry.unimelb.edu.au/wp-uploads/2011/02/2002-1.pdf [18] Y. Nagata, Y.Watananabe, S. Fujita, T. Dohmaru, S. Taniguchi, Formation of Colloidal Silver in Water by Ultrasonic Irradiation, Journal of the Chemical Society (1992), Vol. 16, pp. 20-22. [19] T. Kim, L. Nguyen, T. Ai, T. Nguyen, V. Dang, N. Nguyen, A. Le, Q. Nguyen, Synthesis of Silver Nanoparticles Deposited on Silica by γ-irradiation and Preparation of PE/Ag Nano-compound Masterbatches, Advances in Natural Sciences (2013),Vol. 4, pp.1-4. [20] S.Tang, Y. Tang, F. Gao, Z. Liu, X. Meng, Ultrasonic Electrodeposition of Silver Nanoparticles on Dielectric Silica Spheres, Nanotechnology (2007),Vol 18, pp.1-6. [21] Z. Huang, G. Mills, B. Hajek, Spontaneous Formation of Silver Particles in Basic 2-Propanol, The Journal of Physical Chemistry ( 1993), Vol. 97, pp. 542-550. [22] S. Musić, N. Filipović-Vinceković , L. Sekovanić, Preparation of Amorphous SiO2 Particles and Their Properties , Brazilian Journal of Chemical Engineering (2011), Vol. 28, Vol 01, pp. 89-94. [23] 林千惠, 奈米級SiO2 顆粒之製備及其物性鑑定, 第26屆 纖維紡織科技研討會(2010), pp. 1113-1116. [24] The Structure of Crystalline Solids, http://phys.thu.edu.tw/~hlhsiao/060929.pdf [25] K. Esumi, T. Hosoya, A. Suzuki, K.Torigoe, Formation of Gold and Silver Nanoparticles in Aqueous Solution of Sugar-Persubstituted Poly (Amidoamine) Dendrimers, Journal of Colloid and Interface Science (2000), Vol. 226, pp. 346-352. [26] S. Mehta, S. Chaudhary, M. Gradzielski, Time Dependence of Nucleation and Growth of Silver Nanoparticles Generated by Sugar Reduction in Micellar Media, Journal of Colloid and Interface Science (2010), Vol. 343, pp. 447-453. [27] J . Eccles, U. Bangert, M. Bromfield, P. Christian , A. Harvey, P. Thomas, UV-Vis Plasmon Studies of Metal Nanoparticles, Journal of Physics (2010),Vol. 241, pp.1-4. [28] An Introduction to Ultraviolet-Visible Molecular Absorption Spectrometry, http://www.monzir-pal.net/Instrumental%20Analysis/Problem%20Sets/PS13.pdf [29] R. Serway, Physics for Scientist and Engineers, 6th Ed, W. H. Freeman Publishers (2012) [30] The Structure of Crystalline Solids, http://phys.thu.edu.tw/~hlhsiao/060929.pdf [31] 陳進銘, 超快雷射加工次皮秒即時監測之研究, 台灣中正大學碩士論文(2012). [32] X光微區分析, http://www.ch.ntu.edu.tw/~rsliu/solidchem/Report/Chapter3_report2.pdf [33] 電雙層構造示意圖, http://www.google.com.tw/url?url=http://www2.cma.edu.tw/u_edu/dep_physics/course/powder_phys/ppt/Ch.%25204.ppt&rct=j&frm=1&q=&esrc=s&sa=U&ei=sMSUVevzK4md8QWHyreoAg&ved=0CBkQFjAB&sig2=ZbGzOborX76xVG4yN_iDZA&usg=AFQjCNEa8wD7oEUMtsYWl7gQv7vgCjq_Dw [34] M. Chelliah, J. Rayappan, U. Krishnan, Synthesis and Characterization of Cerium Oxide Nanoparticles by Hydroxide Mediated Approach. Journal of Applied Sciences (2012), Vol. 12, pp. 1734-1737. [35] S. Ma, J. Xue, Y. Zhou, Z. Zhang, Enhanced Visible-light Photocatalytic Aactivity of Ag2O/g-C3N4 p–n Heterojunctions Synthesized via a Photochemical Route for Degradation of Tetracycline Hydrochloride, Royal Society of Chemistry (2015), Vol. 5, pp. 40000-40006. [36] N.Ahmad, M. Malik, F. Al-Nowaiser, Z. Khan, A kinetic Study of Silver Nanoparticles Formation from Paracetamol and Silver (I) in Aqueous and Micellar media, Colloids and Surfaces (2010),Vol. 78, pp.109-114. [37] Á. Szegedi1, M. Popova, J. Valyon, A. Guarnaccio, A. De Stefanis, A. De Bonis, S.Orlando, M. Sansone, R. Teghil, A. Santagata, Comparison of Silver Nanoparticles Confined in Nnanoporous Silica Prepared by Chemical Synthesis and by Ultra-short Pulsed Laser Ablation in Liquid (2014), Applied Physics a Materials Science & Processing ,Vol. 117, pp. 55-62. [38] L. Tzounis, R. Contreras-Caceres, L. Schellkopf, D. Jehnichen, D. Fischer, C. Cai, P. Uhlmann, M. Stammab, Controlled Growth of Ag Nanoparticles Decorated onto the Surface of SiO2 Spheres, Royal Society of Chemistry (2014), Vol. 4, pp.17846–17855. [39] Y. Yamada, M. Kawakubo, S. Watanabe,T. Sugaya, Fundamental Characteristics of Condensed Chemical Mechanical Polishing Waste Slurry, Journal of The Electrochemical Society (2011), Vol. 158, pp. 830-835. [40] V. Manoiu, A. Aloman, Obtaining Silver Nanoparticles by Sonochemical Methods, UPB Scientific Bulletin (2010), Vol. 72, pp.1- 2. [41] Y. Kim, D. Lee, C. Kim, H. Cha, Y. Kang, B. Jo, Preparation and Antibiotic Property of Ag-SiO2 Nanoparticle, Molecular Crystals and Liquid (2007), Vol. 464, pp. 83–91. [42] B. Bhanvasea, D. Pinjari, P. Gogateb, S. Sonawanea, A. Panditb,Synthesis of Exfoliated Poly(Styrene-co-methyl methacrylate)/Montmorillonite Nanocomposite Using Ultrasound Assisted in Situ Emulsion copolymerization, Chemical Engineering Journal (2012), Vol. 181, pp. 770– 778. [43] D. Zhang, H. Cheng, J. Ma, Y. Wang, X. Gai, Synthesis of Silver-coated Silica Nanoparticles in Nonionic Reverse Micelles, Journal of Materials Science (2001), Vol. 20, pp. 439–440. [44] I. Wani, A. Ganguly, J. Ahmed, T. Ahmad ,Silver Nanoparticles: Ultrasonic Wave Assisted Synthesis, Optical Characterization and Surface Area Studies (2011), Vol. 65, pp.520–522. [45] Y. Seo , W. Lee, P. Yeh, Improvements of Oxide-Chemical Mechanical Polishing Performances and Aging Effect of Alumina and Silica Mixed Abrasive slurries, Microelectronic Engineering (2004),Vol. 75 , pp.361–366. [46] H. Lee, H. Jeong, Analysis of Removal Mechanism on Oxide CMP using Mixed Abrasive Slurry, International Journal of Precision Engineering and Manufacturing (2015), Vol. 16, pp.603-607. [47] A. Šileikaitė, J. Puišo, I. Prosyčevas, S. Tamulevičius, Investigation of Silver Nanoparticles Formation Kinetics during Reduction of Silver Nitrate with Sodium citrate, Materials Science (2009),Vol. 15, pp. 21-27.
摘要: 
氧化性化學機械研磨(Oxide chemical mechanical polishing, Oxide-CMP)為半導體製程中重要之一環節,所產生之廢水主要含有次微米等級二氧化矽及超純水。此研磨液之二氧化矽表面帶負電性穩定地懸浮於廢水之中,除了造成廢水的高濁度(Turbidity),也會使廢水處理困難及更需耗費成本於投資處理設備上。
本研究使用超音波輔助將研磨廢水製備成銀/二氧化矽複合粒子材料及其特性分析。製備銀/二氧化矽複合粒子材料,我們使用半導體製程後產生之氧化性化學機械研磨廢水為基礎液體,加入氫氧化鈉(NaOH)、乙二醇(C2H4(OH)2)及硝酸銀(AgNO3)。首先利用氫氧化鈉使二氧化矽表面生成OH基吸引溶液中的銀離子,再使用乙二醇為還原劑及藉由超音波震盪的方式提供還原反應所需之能量,將銀粒子還原於二氧化矽的表面上。我們使用紫外光-可見光譜儀(UV-vis)進行還原之奈米銀特徵峰量測及使用X光繞射儀(XRD)進行晶相分析; 並透過穿透式電子顯微鏡(TEM)確認銀/氧化矽合成後之形貌,最後使用能量散佈光譜儀(EDS)進行複合粒子材料元素分析。根據以上實驗結果,本文獲得以下重要成果:
(1) 根據TEM觀察得知,在二氧化矽表面上合成之銀顆粒大小約為3~5奈米左右,而合成後銀/二氧化矽複合材料顆粒大小約為120 nm。
(2) 於研磨廢液中銀/二氧化矽合成反應中,反應時間15分鐘添加NaOH濃度由0 增加至3.947x10-3M,其UV-vis吸收值從0.046上升至0.335。
(3) 在相同配方及反應時間1小時內,當反應溫度從15到35℃時,則在二氧化矽顆粒上合成之銀粒子數量越來越多,其UV-vis吸收值從1.054上升至1.800。
(4) 硝酸銀濃度由1.022x10-4增加至4.086x10-4M,其反應完成時間由50min增加至130min,其UV-vis吸收值從0.517上升至2.488。
(5) 由反應時間對銀奈米粒子的UV-vis特性吸收波峰(410 nm)變化顯示,銀離子在研磨廢液之二氧化矽顆粒表面的還原反應為一種自催化反應,當系統溫度為25℃及反應時間為2.5小時,則硝酸銀在二氧化矽顆粒表面上還原成銀奈米粒子轉化率達98%。
(6) 在25℃之研磨廢液合成條件下觀察反應速率常數Kobs為2.1x10-3s-1,並利用阿瑞尼士公式(Arrhenius equation)求出在溫度範圍15~35℃之間的反應活化能為7.04 kJ/mol。

Oxide chemical mechanical polishing(Oxide-CMP) is one of the important links of the semiconductor manufacturing process, which wastewater that mainly contains SiO2 with sub-micrometer scale and ultra-pure water. With the electro-negativity, SiO2 particle was stably suspended in waster. It not only causes high turbidity of waster, but it also increase difficulty in waster disposal. Moreover, it will cost more money to invest in treatment equipment.
In this study, we use ultra-sonic wave to prepare Ag /SiO2 composite materials from the Oxide-CMP waster. First of all, we use NaOH to modify the surface of SiO2 generating OH-(hydroxyl group) and attracting Ag+ of the solution including C2H4(OH)2 as a reductant. The use of ultrasonic vibration provides the energy for reduction of Ag+ ions into silver to the nano-particle on the surface of SiO2. Besides, we also use the UV-Vis absorption spectroscopy(UV-Vis) to measure the characteristic absorption peak of silver nano-pacticle, and use X-ray diffraction(XRD) to analysis the crystal phase of Ag/SiO2 composite materials. The morphology of Ag/SiO2 composite materials were observed by transmission electron microscopy (TEM), which element was analyzed by energy dispersive spectrometer(EDS). In accordance with results of the above-mentioned experiments, we get some important conclusions as follows:
(1) According to observations via TEM, the size of the synthesized Ag particles on the surface of SiO2 is around 3-5 nm and the size of as-synthesized Ag/SiO2 composite material is about 120 nm.
(2) After the synthetic reaction of Ag / SiO2 from the slurry waste for 15 minutes with concentration of NaOH from ranging 0 to 3.947x10-3M resulting in absorption value of UV-vis varying from 0.046 to 0.335.
(3) When the reaction temperatures were changed from 15℃ to 35℃, the synthesized Silver particles will be more and more, increasing absorption value of UV-vis from 1.054 to 1.800.
(4) When the concentration of AgNO3 was increasing from 1.022x10-4 to 4.086x10-4M, the systhezing time will be increased from 50 to 130 minutes, where UV-vis absorbance of Ag nano-particle will be increased from 0.517 to 2.488.
(5) According to the relationship between reaction time and the peak of UV-vis absorption of the silver nano particles, the reduction reaction of Ag+ ions on the surface of SiO2 in the slurry waste is an autocatalytic reaction. Which the conversion from AgNO3 into Ag nano-particle on the surface of SiO2 is as 98% for reaction time of 2.5 hours at 25℃.
(6) The reaction rate constant kobs of slurry waster is 2.1x10-3s-1 at 25℃ and reaction activation energy is 7.04 kJ/mol at a temperature range between 15℃ and 35℃according to Arrhenius equation.
URI: http://hdl.handle.net/11455/91589
其他識別: U0005-1908201513273400
Rights: 同意授權瀏覽/列印電子全文服務,2018-08-26起公開。
Appears in Collections:化學工程學系所

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-104-5101065607-1.pdf4.96 MBAdobe PDFThis file is only available in the university internal network   
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.