Please use this identifier to cite or link to this item:
標題: 氮化鈦作為高導電度耐蝕性載體應用於直接甲醇燃料電池之研究
Titanium nitride-based electrodes for direct methanol fuel cells
作者: Chia-Min Yo
關鍵字: Titanium nitride;Direct methanol fuel cell;Catalyst;氮化鈦;甲醇燃料電池;觸媒
引用: [1] F. Gloaguen, J. M. Le´Ger, and C. Lamy, 'Electrocatalytic oxidation of methanol on platinum nanoparticles electrodeposited onto porous carbon substrates,' Journal of Applied Electrochemistry, vol. 27, pp. 1052-1060, 1997. [2] A. S. Aricò, S. Srinivasan, and V. Antonucci, 'DMFCs: From Fundamental Aspects to Technology Development,' Fuel Cells, vol. 1, pp. 133-161, 2001. [3] K.-Y. Chan, J. Ding, J. Ren, S. Cheng, and K. Y. Tsang, 'Supported mixed metal nanoparticles as electrocatalysts in low temperature fuel cells,' Journal of Materials Chemistry, vol. 14, pp. 505-516, 2004. [4] T. Iwasita, 'Electrocatalysis of methanol oxidation,' Electrochimica Acta, vol. 47, pp. 3663-3674, 2002. [5] J. Larminie, A. Dicks, and M. S. McDonald, Fuel cell systems explained vol. 2: Wiley New York, 2003. [6] 鄭雅堂, '燃料電池發電技術,' 汽電共生報導第十四期, 第 17-25 頁, 民國 87 年, 1998. [7] A. S. Aricò, V. Baglio, and V. Antonucci, Direct methanol fuel cells: history, status and perspectives: Wiley-VCH, Weinheim, Germany, 2009. [8] 鄭耀宗 and 徐耀昇, '燃料電池技術進展的現況分析,' 燃料電池論文集, 經濟部能源委員會, pp15, vol. 27, 1999. [9] J. Giner and C. Hunter, 'Model of a hydrogen-air fuel cell with alkaline electrolyte,' J. Electrochem. Soc, vol. 116, p. 124, 1969. [10] E. A. Ticianelli, C. R. Derouin, A. Redondo, and S. Srinivasan, 'Methods to Advance Technology of Proton Exchange Membrane Fuel Cells,' Journal of The Electrochemical Society, vol. 135, pp. 2209-2214, 1988. [11] A. Hamnett, 'Mechanism and electrocatalysis in the direct methanol fuel cell,' Catalysis Today, vol. 38, pp. 445-457, 1997. [12] H. Dohle, J. Divisek, and R. Jung, 'Process engineering of the direct methanol fuel cell,' Journal of Power Sources, vol. 86, pp. 469-477, 2000. [13] C.-Y. Wang, 'Fundamental models for fuel cell engineering,' Chemical reviews, vol. 104, pp. 4727-4766, 2004. [14] L. Carrette, K. A. Friedrich, and U. Stimming, 'Fuel Cells – Fundamentals and Applications,' Fuel Cells, vol. 1, pp. 5-39, 2001. [15] M. Hogarth and T. Ralph, 'Catalysis for low temperature fuel cells,' Platinum Metals Review, vol. 46, pp. 146-164, 2002. [16] A. L. Ocampo, M. Miranda-Hernández, J. Morgado, J. A. Montoya, and P. J. Sebastian, 'Characterization and evaluation of Pt-Ru catalyst supported on multi-walled carbon nanotubes by electrochemical impedance,' Journal of Power Sources, vol. 160, pp. 915-924, 2006. [17] Z. He, J. Chen, D. Liu, H. Zhou, and Y. Kuang, 'Electrodeposition of Pt–Ru nanoparticles on carbon nanotubes and their electrocatalytic properties for methanol electrooxidation,' Diamond and Related Materials, vol. 13, pp. 1764-1770, 2004. [18] J. Ding, K.-Y. Chan, J. Ren, and F.-s. Xiao, 'Platinum and platinum–ruthenium nanoparticles supported on ordered mesoporous carbon and their electrocatalytic performance for fuel cell reactions,' Electrochimica Acta, vol. 50, pp. 3131-3141, 2005. [19] K.-W. Park, D.-S. Han, and Y.-E. Sung, 'PtRh alloy nanoparticle electrocatalysts for oxygen reduction for use in direct methanol fuel cells,' Journal of Power Sources, vol. 163, pp. 82-86, 2006. [20] Y. Saito, Y. Tani, N. Miyagawa, K. Mitsushima, A. Kasuya, and Y. Nishina, 'High yield of single-wall carbon nanotubes by arc discharge using Rh–Pt mixed catalysts,' Chemical Physics Letters, vol. 294, pp. 593-598, 1998. [21] F. Alcaide, G. Álvarez, P. L. Cabot, H.-J. Grande, O. Miguel, and A. Querejeta, 'Testing of carbon supported Pd–Pt electrocatalysts for methanol electrooxidation in direct methanol fuel cells,' International Journal of Hydrogen Energy, vol. 36, pp. 4432-4439, 2011. [22] B. N. Grgur, N. M. Markovic, and P. N. Ross, 'Electrooxidation of H2, CO and H2/CO mixtures on a well-characterized Pt–Re bulk alloy electrode and comparison with other Pt binary alloys,' Electrochimica Acta, vol. 43, pp. 3631-3635, 1998. [23] E. M. Crabb, R. Marshall, and D. Thompsett, 'Carbon Monoxide Electro‐oxidation Properties of Carbon‐Supported PtSn Catalysts Prepared Using Surface Organometallic Chemistry,' Journal of The Electrochemical Society, vol. 147, pp. 4440-4447, 2000. [24] J. Luo, P. N. Njoki, Y. Lin, L. Wang, and C. J. Zhong, 'Activity-composition correlation of AuPt alloy nanoparticle catalysts in electrocatalytic reduction of oxygen,' Electrochemistry Communications, vol. 8, pp. 581-587, 2006. [25] T. Yajima, H. Uchida, and M. Watanabe, 'In-Situ ATR-FTIR Spectroscopic Study of Electro-oxidation of Methanol and Adsorbed CO at Pt−Ru Alloy,' The Journal of Physical Chemistry B, vol. 108, pp. 2654-2659, 2004. [26] Z. Liu, X. Y. Ling, X. Su, and J. Y. Lee, 'Carbon-Supported Pt and PtRu Nanoparticles as Catalysts for a Direct Methanol Fuel Cell,' The Journal of Physical Chemistry B, vol. 108, pp. 8234-8240, 2004. [27] 盧敏彥、張美元、廖怡萱、黃俊傑, '直接甲醇燃料電池電極觸媒,' 工業材料雜誌, vol. 196 期, 1993. [28] H. Song, P. Xiao, X. Qiu, and W. Zhu, 'Design and preparation of highly active carbon nanotube-supported sulfated TiO2 and platinum catalysts for methanol electrooxidation,' Journal of Power Sources, vol. 195, pp. 1610-1614, 2010. [29] Z.-Z. Jiang, Z.-B. Wang, Y.-Y. Chu, D.-M. Gu, and G.-P. Yin, 'Ultrahigh stable carbon riveted Pt/TiO2-C catalyst prepared by in situ carbonized glucose for proton exchange membrane fuel cell,' Energy & Environmental Science, vol. 4, pp. 728-735, 2011. [30] C.-S. Chen and F.-M. Pan, 'Electrocatalytic activity of Pt nanoparticles deposited on porous TiO2 supports toward methanol oxidation,' Applied Catalysis B: Environmental, vol. 91, pp. 663-669, 2009. [31] S. Yang, C. Zhao, C. Ge, X. Dong, X. Liu, Y. Liu, et al., 'Ternary Pt-Ru-SnO2 hybrid architectures: unique carbon-mediated 1-D configuration and their electrocatalytic activity to methanol oxidation,' Journal of Materials Chemistry, vol. 22, pp. 7104-7107, 2012. [32] X. Yu, L. Kuai, and B. Geng, 'CeO2/rGO/Pt sandwich nanostructure: rGO-enhanced electron transmission between metal oxide and metal nanoparticles for anodic methanol oxidation of direct methanol fuel cells,' Nanoscale, vol. 4, pp. 5738-5743, 2012. [33] Y. Y. Chu, J. Cao, Z. Dai, and X. Y. Tan, 'A novel Pt/CeO2 catalyst coated with nitrogen-doped carbon with excellent performance for DMFCs,' Journal of Materials Chemistry A, vol. 2, pp. 4038-4044, 2014. [34] H. Huang, Q. Chen, M. He, X. Sun, and X. Wang, 'A ternary Pt/MnO2/graphene nanohybrid with an ultrahigh electrocatalytic activity toward methanol oxidation,' Journal of Power Sources, vol. 239, pp. 189-195, 2013. [35] Y. Wang, L. Li, L. Hu, L. Zhuang, J. Lu, and B. Xu, 'A feasibility analysis for alkaline membrane direct methanol fuel cell: thermodynamic disadvantages versus kinetic advantages,' Electrochemistry Communications, vol. 5, pp. 662-666, 2003. [36] A. V. Tripković, K. D. Popović, B. N. Grgur, B. Blizanac, P. N. Ross, and N. M. Marković, 'Methanol electrooxidation on supported Pt and PtRu catalysts in acid and alkaline solutions,' Electrochimica Acta, vol. 47, pp. 3707-3714, 2002. [37] A. V. Tripković, K. D. Popović, J. D. Lović, V. M. Jovanović, and A. Kowal, 'Methanol oxidation at platinum electrodes in alkaline solution: comparison between supported catalysts and model systems,' Journal of Electroanalytical Chemistry, vol. 572, pp. 119-128, 2004. [38] K. Scott, E. Yu, G. Vlachogiannopoulos, M. Shivare, and N. Duteanu, 'Performance of a direct methanol alkaline membrane fuel cell,' Journal of Power Sources, vol. 175, pp. 452-457, 2008. [39] S. J. Lue, K. P. O. Mahesh, W.-T. Wang, J.-Y. Chen, and C.-C. Yang, 'Permeant transport properties and cell performance of potassium hydroxide doped poly(vinyl alcohol)/fumed silica nanocomposites,' Journal of Membrane Science, vol. 367, pp. 256-264, 2011. [40] J. Liu, J. Ye, C. Xu, S. P. Jiang, and Y. Tong, 'Kinetics of ethanol electrooxidation at Pd electrodeposited on Ti,' Electrochemistry Communications, vol. 9, pp. 2334-2339, 2007. [41] H. Liu, C. Song, L. Zhang, J. Zhang, H. Wang, and D. P. Wilkinson, 'A review of anode catalysis in the direct methanol fuel cell,' Journal of Power Sources, vol. 155, pp. 95-110, 2006. [42] Y. Li, L. Tang, and J. Li, 'Preparation and electrochemical performance for methanol oxidation of pt/graphene nanocomposites,' Electrochemistry Communications, vol. 11, pp. 846-849, 2009. [43] K. Ding, Y. Wang, H. Yang, C. Zheng, YanliCao, H. Wei, et al., 'Electrocatalytic activity of multi-walled carbon nanotubes-supported PtxPdy catalysts prepared by a pyrolysis process toward ethanol oxidation reaction,' Electrochimica Acta, vol. 100, pp. 147-156, 2013. [44] J. Zhao, L. Zhang, T. Chen, H. Yu, L. Zhang, H. Xue, et al., 'Supercritical Carbon-Dioxide-Assisted Deposition of Pt Nanoparticles on Graphene Sheets and Their Application as an Electrocatalyst for Direct Methanol Fuel Cells,' The Journal of Physical Chemistry C, vol. 116, pp. 21374-21381, 2012. [45] Y.-C. Tsai and Y.-H. Hong, 'Electrochemical deposition of platinum nanoparticles in multiwalled carbon nanotube–Nafion composite for methanol electrooxidation,' Journal of Solid State Electrochemistry, vol. 12, pp. 1293-1299, 2008. [46] F. Cardarelli, Materials handbook: a concise desktop reference: Springer Science & Business Media, 2008. [47] K.-L. Hsueh, L.-D. Tsai, C.-C. Lai, and Y.-M. Peng, 'Direct Methanol Fuel Cells,' in Electrochemical Technologies for Energy Storage and Conversion, ed: Wiley-VCH Verlag GmbH & Co. KGaA, 2011, pp. 701-727. [48] Z.-B. Wang, X.-P. Wang, P.-J. Zuo, B.-Q. Yang, G.-P. Yin, and X.-P. Feng, 'Investigation of the performance decay of anodic PtRu catalyst with working time of direct methanol fuel cells,' Journal of Power Sources, vol. 181, pp. 93-100, 2008. [49] Z.-B. Wang, H. Rivera, X.-P. Wang, H.-X. Zhang, P.-X. Feng, E. A. Lewis, et al., 'Catalyst failure analysis of a direct methanol fuel cell membrane electrode assembly,' Journal of Power Sources, vol. 177, pp. 386-392, 2008. [50] H.-C. Cha, C.-Y. Chen, and J.-Y. Shiu, 'Investigation on the durability of direct methanol fuel cells,' Journal of Power Sources, vol. 192, pp. 451-456, 2009. [51] S. Sharma and B. G. Pollet, 'Support materials for PEMFC and DMFC electrocatalysts—A review,' Journal of Power Sources, vol. 208, pp. 96-119, 2012. [52] Z. Liu, X. Zhang, and L. Hong, 'Physical and electrochemical characterizations of nanostructured Pd/C and PdNi/C catalysts for methanol oxidation,' Electrochemistry Communications, vol. 11, pp. 925-928, 2009. [53] Z.-P. Sun, X.-G. Zhang, R.-L. Liu, Y.-Y. Liang, and H.-L. Li, 'A simple approach towards sulfonated multi-walled carbon nanotubes supported by Pd catalysts for methanol electro-oxidation,' Journal of Power Sources, vol. 185, pp. 801-806, 2008. [54] H. Li, G. Chang, Y. Zhang, J. Tian, S. Liu, Y. Luo, et al., 'Photocatalytic synthesis of highly dispersed Pd nanoparticles on reduced graphene oxide and their application in methanol electro-oxidation,' Catalysis Science & Technology, vol. 2, pp. 1153-1156, 2012. [55] N. Soin, S. S. Roy, T. H. Lim, and J. A. D. McLaughlin, 'Microstructural and electrochemical properties of vertically aligned few layered graphene (FLG) nanoflakes and their application in methanol oxidation,' Materials Chemistry and Physics, vol. 129, pp. 1051-1057, 2011. [56] S.-Y. Huang, P. Ganesan, and B. N. Popov, 'Electrocatalytic activity and stability of niobium-doped titanium oxide supported platinum catalyst for polymer electrolyte membrane fuel cells,' Applied Catalysis B: Environmental, vol. 96, pp. 224-231, 2010. [57] R. Ganesan and J. S. Lee, 'An electrocatalyst for methanol oxidation based on tungsten trioxide microspheres and platinum,' Journal of Power Sources, vol. 157, pp. 217-221, 2006. [58] Z. Fu, Q. M. Huang, X. D. Xiang, Y. L. Lin, W. Wu, S. J. Hu, et al., 'Mesoporous tungsten carbide-supported platinum as carbon monoxide-tolerant electrocatalyst for methanol oxidation,' International Journal of Hydrogen Energy, vol. 37, pp. 4704-4709, 2012. [59] J. N. Tiwari, R. N. Tiwari, and K.-L. Lin, 'Synthesis of Pt Nanopetals on Highly Ordered Silicon Nanocones for Enhanced Methanol Electrooxidation Activity,' ACS Applied Materials & Interfaces, vol. 2, pp. 2231-2237, 2010. [60] H. Holleck, 'Material selection for hard coatings,' Journal of Vacuum Science & Technology A, vol. 4, pp. 2661-2669, 1986. [61] J. Geibel and J. Leland, 'Encyclopedia of Chemical Technology, vol. 19,' ed: John Wiley & Sons, 1996. [62] M. Matsuoka, S. Isotani, J. C. R. Mittani, J. F. D. Chubaci, K. Ogata, and N. Kuratani, 'Effects of arrival rate and gas pressure on the chemical bonding and composition in titanium nitride films prepared on Si(100) substrates by ion beam and vapor deposition,' Journal of Vacuum Science & Technology A, vol. 23, pp. 137-141, 2005. [63] D.-S. Lee, H.-J. Woo, D.-Y. Park, J. Ha, C. S. Hwang, and E. Yoon, 'Effects of the microstructure of platinum electrode on the oxidation behavior of TiN diffusion barrier layer,' Japanese journal of applied physics, vol. 42, p. 630, 2003. [64] N. W. Cheung, H. von Seefeld, M. A. Nicolet, F. Ho, and P. Iles, 'Thermal stability of titanium nitride for shallow junction solar cell contacts,' Journal of Applied Physics, vol. 52, pp. 4297-4299, 1981. [65] Y. Wang, H. Yuan, X. Lu, Z. Zhou, and D. Xiao, 'All Solid-State pH Electrode Based on Titanium Nitride Sensitive Film,' Electroanalysis, vol. 18, pp. 1493-1498, 2006. [66] M.-H. Yeh, L.-Y. Lin, C.-P. Lee, H.-Y. Wei, C.-Y. Chen, C.-G. Wu, et al., 'A composite catalytic film of PEDOT:PSS/TiN-NPs on a flexible counter-electrode substrate for a dye-sensitized solar cell,' Journal of Materials Chemistry, vol. 21, pp. 19021-19029, 2011. [67] B. Yoo, K.-J. Kim, Y. H. Kim, K. Kim, M. J. Ko, W. M. Kim, et al., 'Titanium nitride thin film as a novel charge collector in TCO-less dye-sensitized solar cell,' Journal of Materials Chemistry, vol. 21, pp. 3077-3084, 2011. [68] B. Avasarala and P. Haldar, 'On the stability of TiN-based electrocatalysts for fuel cell applications,' International Journal of Hydrogen Energy, vol. 36, pp. 3965-3974, 2011. [69] K. Wasa and S. Hayakawa, 'Reactively sputtered titanium resistors, capacitors and rectifiers for microcircuits,' Microelectronics Reliability, vol. 6, pp. 213-221, 1967. [70] W. Synielnikowa, T. Niemyski, J. Panczyk, and E. Kierzek-Pecold, 'Vapour-phase crystallization and some physical properties of titanium nitride,' Journal of the Less Common Metals, vol. 23, pp. 1-6, 1971. [71] U. C. Oh and J. H. Je, 'Effects of strain energy on the preferred orientation of TiN thin films,' Journal of Applied Physics, vol. 74, pp. 1692-1696, 1993. [72] M. I. Jones, I. R. McColl, and D. M. Grant, 'Effect of substrate preparation and deposition conditions on the preferred orientation of TiN coatings deposited by RF reactive sputtering,' Surface and Coatings Technology, vol. 132, pp. 143-151, 2000. [73] J. A. Thornton, 'Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings,' Journal of Vacuum Science & Technology, vol. 11, pp. 666-670, 1974. [74] C.-Y. Su, C.-T. Pan, T.-P. Liou, P.-T. Chen, and C.-K. Lin, 'Investigation of the microstructure and characterizations of TiN/CrN nanomultilayer deposited by unbalanced magnetron sputter process,' Surface and Coatings Technology, vol. 203, pp. 657-660, 2008. [75] C. He, J. Zhang, J. Wang, G. Ma, D. Zhao, and Q. Cai, 'Effect of structural defects on corrosion initiation of TiN nanocrystalline films,' Applied Surface Science, vol. 276, pp. 667-671, 2013. [76] P. T. Kissinger and W. R. Heineman, 'Cyclic voltammetry,' Journal of Chemical Education, vol. 60, p. 702, 1983. [77] '' [78] 吳宗明, 呂福興, 薛富盛, and 蔡毓楨, '原子力顯微鏡實作訓練教材,' 五南圖書出版, 民國九十六年, 2007. [79] H. G. Jiang, M. Rühle, and E. J. Lavernia, 'On the applicability of the x-ray diffraction line profile analysis in extracting grain size and microstrain in nanocrystalline materials,' Journal of Materials Research, vol. 14, pp. 549-559, 1999. [80] 'JCPDS-International Center for Diffraction Data,PCPDFWIN,' vol. 2.3, 2002. [81] J. E. Sundgren, 'Structure and properties of TiN coatings,' Thin Solid Films, vol. 128, pp. 21-44, 1985. [82] M. M. Ottakam Thotiyl, T. Ravikumar, and S. Sampath, 'Platinum particles supported on titanium nitride: an efficient electrode material for the oxidation of methanol in alkaline media,' Journal of Materials Chemistry, vol. 20, pp. 10643-10651, 2010. [83] H. Huang, H. Chen, D. Sun, and X. Wang, 'Graphene nanoplate-Pt composite as a high performance electrocatalyst for direct methanol fuel cells,' Journal of Power Sources, vol. 204, pp. 46-52, 2012. [84] G. Jerkiewicz, G. Vatankhah, J. Lessard, M. P. Soriaga, and Y.-S. Park, 'Surface-oxide growth at platinum electrodes in aqueous H2SO4: Reexamination of its mechanism through combined cyclic-voltammetry, electrochemical quartz-crystal nanobalance, and Auger electron spectroscopy measurements,' Electrochimica Acta, vol. 49, pp. 1451-1459, 2004. [85] H. A. Gasteiger, N. Markovic, P. N. Ross, and E. J. Cairns, 'Methanol electrooxidation on well-characterized platinum-ruthenium bulk alloys,' The Journal of Physical Chemistry, vol. 97, pp. 12020-12029, 1993. [86] M. Umeda, M. Kokubo, M. Mohamedi, and I. Uchida, 'Porous-microelectrode study on Pt/C catalysts for methanol electrooxidation,' Electrochimica Acta, vol. 48, pp. 1367-1374, 2003. [87] A. Pozio, M. De Francesco, A. Cemmi, F. Cardellini, and L. Giorgi, 'Comparison of high surface Pt/C catalysts by cyclic voltammetry,' Journal of Power Sources, vol. 105, pp. 13-19, 2002. [88] Y. Lin, X. Cui, C. H. Yen, and C. M. Wai, 'PtRu/Carbon Nanotube Nanocomposite Synthesized in Supercritical Fluid:  A Novel Electrocatalyst for Direct Methanol Fuel Cells,' Langmuir, vol. 21, pp. 11474-11479, 2005. [89] R. N. Singh and R. Awasthi, 'Graphene support for enhanced electrocatalytic activity of Pd for alcohol oxidation,' Catalysis Science & Technology, vol. 1, pp. 778-783, 2011. [90] Z. X. Liang, T. S. Zhao, J. B. Xu, and L. D. Zhu, 'Mechanism study of the ethanol oxidation reaction on palladium in alkaline media,' Electrochimica Acta, vol. 54, pp. 2203-2208, 2009. [91] C. S. Sharma, R. Awasthi, R. N. Singh, and A. S. K. Sinha, 'Graphene-Manganite-Pd Hybrids as Highly Active and Stable Electrocatalysts for Methanol Oxidation and Oxygen Reduction,' Electrochimica Acta, vol. 136, pp. 166-175, 2014. [92] Y.-H. Qin, H.-H. Yang, X.-S. Zhang, P. Li, and C.-A. Ma, 'Effect of carbon nanofibers microstructure on electrocatalytic activities of Pd electrocatalysts for ethanol oxidation in alkaline medium,' International Journal of Hydrogen Energy, vol. 35, pp. 7667-7674, 2010. [93] R. N. Singh, A. Singh, and Anindita, 'Electrocatalytic activity of binary and ternary composite films of Pd, MWCNT and Ni, Part II: Methanol electrooxidation in 1 M KOH,' International Journal of Hydrogen Energy, vol. 34, pp. 2052-2057, 2009. [94] Y. Zhao, L. Zhan, J. Tian, S. Nie, and Z. Ning, 'Enhanced electrocatalytic oxidation of methanol on Pd/polypyrrole–graphene in alkaline medium,' Electrochimica Acta, vol. 56, pp. 1967-1972, 2011
氮化鈦(Titanium nitride,TiN),為一過渡金屬氮化物的陶瓷材料,其具低電阻、良導熱性、化學穩定等特性。本論文研究結合中興大學材料系呂福興教授研究團隊所提供之導電TiN薄膜,並將此導電氮化鈦薄膜作為直接甲醇燃料電池陽極電極,且沉積鉑(Platinum,Pt)、鈀(Palladium,Pd)觸媒探討此陽極觸媒材料對甲醇氧化的活性。
本實驗分成兩部分,第一部分使用電化學沉積法將Pt奈米觸媒沉積於TiN載體上,製備鉑/氮化鈦(Pt/TiN)陽極觸媒材料,利用場發射式掃描式電子顯微鏡(Field emission-scanning electron microscope,FE-SEM)與原子力顯微鏡 (Atomic force microscope,AFM)觀察表面形貌,使用X光繞射分析儀(X-ray diffraction,XRD)作結晶分析與X光能量散譜儀(X-ray energy dispersive spectrometer,EDS)作元素分析,其結果證實Pt觸媒沉積於 TiN載體上。Pt/TiN薄膜陽極觸媒材料在0.5 M硫酸溶液中探討其電化學活性面積 (Electrochemically active surface area,ECSA)及在2 M甲醇和1 M硫酸混合溶液中探討其甲醇的氧化活性,並和商用碳黑(Carbon black,Vulcan XC-72)載體比較,實驗結果得知其擁有較大的ECSA及較良好的甲醇電氧化活性,最後更進一步探討Pt/TiN陽極觸媒材料對甲醇氧化電活性的長時間穩定性。
第二部分使用Pd觸媒來取代Pt觸媒,並在鹼性下探討直接甲醇燃料電池。將製備完成後鈀/氮化鈦(Pd/TiN)陽極觸媒材料同樣FE-SEM和AFM觀察表面形貌,使用XRD作結晶分析與EDS作元素分析。Pd/TiN陽極觸媒材料在0.5 M氫氧化鉀探討其ECSA及1 M甲醇和1 M氫氧化鉀混合溶液中探討甲醇的氧化活性,並和Vulcan XC-72載體比較,實驗結果得知其擁有較大的ECSA及較良好的甲醇電氧化活性,最後更進一步探討Pd/TiN陽極觸媒材料對甲醇氧化電活性的長時間穩定性。

TiN is a transition metal compound which has inert nature, high electrical conductivity and corrosion resistance. In this study, platinum and palladium nanoparticles were successfully deposited on titanium nitride(TiN)and their electrocatalytic activities for methanol oxidation were investigated. The morphology of TiN was inspected by scanning electron microscope. The study include two parts, in part Ι, Pt nanoparticles supported on TiN were investigated as anode electrocatalytic materials for direct methanol fuel cells. The morphology and composition of the Pt/TiN were characterized by scanning electron microscopy, atomic force microscope, X-ray diffraction, and energy dispersive X-ray spectroscopy. The Pt/TiN showed a sharp hydrogen desorption peak at about -0.2 V vs. Ag/AgCl in a solution of 0.5 M H2SO4. In comparison with Vulcan XC-72-Pt modified glassy carbon electrode(Vulcan XC-72-Pt/GCE), the Pt/TiN exhibited a high value of electrochemically active surface area(ECSA)and an excellent electrocatalytic activity for methanol electrooxidation reaction. The electrocatalytic properties of Pt/TiN for methanol electrooxidation were investigated by cyclic voltammetry in 2 M CH3OH + 1 M H2SO4 solution. The Pt/TiN showed a higher If/Ib value and a better stability than Vulcan XC-72-Pt/GCE.
In partⅡ, Pd nanoparticles supported on TiN were investigated as anode electrocatalytic materials for direct methanol fuel cells in alkaline media. The morphology and composition of the Pd/TiN were characterized by scanning electron microscopy, atomic force microscope, X-ray diffraction, and energy dispersive X-ray spectroscopy.Cyclic voltammetry and chronoamperometry tests demonstrated that the Pd/TiN showed higher activity and stability for the methanol oxidation reaction in alkaline media than the Vulcan XC-72-Pd /GCE did.
其他識別: U0005-1708201512574000
Rights: 同意授權瀏覽/列印電子全文服務,2018-08-25起公開。
Appears in Collections:化學工程學系所

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-104-7101065039-1.pdf7.66 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.