Please use this identifier to cite or link to this item:
http://hdl.handle.net/11455/91604
標題: | IC封測廠切割研磨廢水回收可行性之探討 -以UF膜處理技術為例 Feasibility Study of Dicing Saw Grinding Wastewater Reclamation for IC Assembly and Testing Undustries - Using UF Membrane Technology as Example |
作者: | Shih-Feng Tseng 曾世豐 |
關鍵字: | 截流式;掃流式;晶圓切割;Dead End;Cross Flow;Dicing Saw | 引用: | 丁志華、戴寶通(2000).半導體廠超純水簡介.毫微米通訊.第七卷第四期.31-39。 李文亮等(2000).半導體業CMP廢水處理回收再利用實例介紹.工業污染防治工程實務技術研討會.140-148。 李正周(2009).UF薄膜處理單元矽酸積垢清洗策略研究(碩士論文).國立交通學工學院工學院碩士在職專班永續環境科技組。 李佩玲(2003).極微濾薄膜技術處理染料水溶液之研究(碩士論文).國立台灣科技大學化學工程研究所。 李權家(2006).管狀無機模製備及其於化學機械研磨廢水處理之應用(碩士論文).國立中山大學環境工程研究所。 沈世如(2008).CMP廢水中溶解矽於UF薄膜結垢之研究(碩士論文).國立交通學工學院專班永續環境科技學程。 林何印(2005).超濾與逆滲透薄膜程序處理及回收工業廢水之研究(碩士論文).國立中央大學環境工程研究所。 林志朋等(1999).柱槽溶氣加壓浮選處理半導體化學機械研磨(CMP)廢液之研究.第二十四屆廢水處理技術研討會論文集.851-856。 林欣慧(2005).利用 UF 配合鎂鹽前處理移除 CMP 廢水矽酸之研究(碩士論文) .國立交通大學環境工程研究所。 林昱宏(2010).製程廢水回收處理系統之經濟效益研究(碩士論文).國立交通大學工學院產業安全與防災學程。 姚智元(2012).薄膜材質與混凝前處理對UF阻塞現象影響之研究(碩士論文).國立成功大學環境工程學系。 徐毓蘭(2004).工業廢水回收再利用策略探討(碩士論文).國立台北大學資源管理研究所。 張勁燕(2000).半導體製程設備.第十章化學機械研磨.407-445。 張添晉、陳孝行(2005).離島地區含鹽井水薄膜程序二氧化矽處理之研究.中華民國自來水協會。 梁美柔(2000).CMP 廢水處理技術.電子月刊第六卷第八期.140-143。 陳宜秀(2002).天然有機物對於UF薄膜阻塞機制之探討(碩士論文).淡江大學水資源及環境工程學系碩士班。 陶氏化學Dowex(2012).UF操作技術手冊。 富士康SMT(2011).IC封裝流程介紹。 黃俞昌(2005).科學園區節約用水之努力及作法.節水季刊.第37期。 楊金鐘等(2000).利用外加電場之掃流式微過濾處理半導體業晶圓廠化學機械研磨廢水之初步研究.第二十五屆廢水處理技術研討會論文集.770-774。 楊叢印(2003).結合電過濾電透析技術處理CMP廢水並同步產製電解水之研究(博士論文).國立中山大學環境工程研究所。 蔡佳星(2013).晶圓級封裝凸塊介電層製程技術之改進(碩士論文).高雄應用大學化學工程與材料工程系。 謝孟伶(2008).前氧化對UF膜處理合藻房水阻塞現象之研究(碩士論文).國立成功大學環境工程學系。 羅金生(2001).半導體廠化學機械研磨廢水(CMP)回收再利用可行性評估(碩士論文).國立台灣大學環境工程研究所。 Benjamin, M. M., Sletten, R. S., Bailey, R. P., & Bennett, T. (1996). Sorption and filtration of metals using iron-oxide-coated sand. Water Research, 30(11), 2609-2620. Bohner, H. F., & Bradley Jr, R. L. (1992). Effective cleaning and sanitizing of polysulfone ultrafiltration membrane systems. Journal of dairy science, 75(3), 718-724. Chan, R., Chen, V., & Bucknall, M. P. (2002). Ultrafiltration of protein mixtures: measurement of apparent critical flux, rejection performance, and identification of protein deposition. Desalination, 146(1), 83-90. Chang, C. Y., & Sze, S. M. (1996). ULSI technology. McGraw-Hill Book Co Ltd. 433-445. Cheryan, M. (1986). Ultrafiltration handbook. Technomic Publishing Co. Inc.. Choi, K. Y. J., & Dempsey, B. A. (2005). Bench-scale evaluation of critical flux and TMP in low-pressure membrane filtration. Journal (American Water Works Association), 134-143. Field, R. W., Wu, D., Howell, J. A., & Gupta, B. B. (1995). Critical flux concept for microfiltration fouling. Journal of Membrane Science, 100(3), 259-272. Hammes, F., Meylan, S., Salhi, E., Köster, O., Egli, T., & Von Gunten, U. (2007). Formation of assimilable organic carbon (AOC) and specific natural organic matter (NOM) fractions during ozonation of phytoplankton. Water research, 41(7), 1447-1454. Hermia, J. (1982). Constant pressure blocking filtration laws-application to power-law non-newtonian fluids. Institution of Chemical Engineers, 60, pp. 183-187. Huisman, I. H., Vellenga, E., Trägårdh, G., & Trägårdh, C. (1999). The influence of the membrane zeta potential on the critical flux for crossflow microfiltration of particle suspensions. Journal of membrane science, 156(1), 153-158. International Technology Roadmap for Semiconductors. (ITRS 2006 ).UPW Roadmap , 34. Jacangelo, J. G., Laine, J. M., Cummings, E. W., & Adham, S. S. (1995). UF with pretreatment for removing DBP precursors. Journal-American Water Works Association, 87(3), 100-112. Kazemimoghadam, M., & Mohammadi, T. (2007). Chemical cleaning of ultrafiltration membranes in the milk industry. Desalination, 204(1), 213-218. Laine, J. M., Clark, M. M., & Mallevialle, J. (1990). Ultrafiltration of lake water: effect of pretreatment on the partitioning of organics, THMFP, and flux. Journal-American Water Works Association, 82(12), 82-87. Liang, H., Gong, W., Chen, J., & Li, G. (2008). Cleaning of fouled ultrafiltration (UF) membrane by algae during reservoir water treatment. Desalination, 220(1), 267-272. Lin, C. F., Huang, Y. J., & Hao, O. J. (1999). Ultrafiltration processes for removing humic substances: effect of molecular weight fractions and PAC treatment. Water Research, 33(5), 1252-1264. Liu, C., Caothien, S., Hayes, J., Caothuy, T., Otoyo, T., & Ogawa, T. (2001). Membrane chemical cleaning: from art to science. Pall Corporation, Port Washington, NY, 11050. Melamane, X. L., Pletschke, B. I., Leukes, W. D., & Whiteley, C. G. (2002). Cleaning fouled membranes using sludge enzymes. Water SA, 28, 100-104. Nagaoka, H., Yamanishi, S., & Miya, A. (1998). Modeling of biofouling by extracellular polymers in a membrane separation activated sludge system.Water Science and Technology, 38(4), 497-504. Nakatsuka, S., Nakate, I., & Miyano, T. (1996). Drinking water treatment by using ultrafiltration hollow fiber membranes. Desalination, 106(1), 55-61. Ramesh Babu, P., & Gaikar, V. G. (2001). Membrane characteristics as determinant in fouling of UF membranes. Separation and purification technology, 24(1), 23-34. Toohi, J. (1999). The Road to Zero Discharge. Pollution Engineering Online. | 摘要: | 近年來半導體、光電、太陽能等電子產業,於環境保護的意識抬頭,且科學園區規定廢水之回收率需達85%的要求壓力下,水再生之議題日漸被重視,其中封測產業之切割研磨廢水,具有高濁度但低電導度之特性,經分析高濁度物質為不溶性之SiO2懸浮微粒,只要能夠用簡單的物理方式去除,即能夠回收用於製程用水。但由於廢水濁度高之特性,使得回收水處理設備,常因阻塞而降低回收效率,非溶解矽粉粒徑到達奈米等級,其化學性質穩定呈懸浮狀態不易沉降,即使以傳統方法加藥混凝沉澱技術,亦不易將之去除,且會產生大量污泥造成二次污染。 因此,本研究針對此廢水特性,以不加任何藥劑方式操作,選擇適當UF超過濾薄膜來進行回收測試,摘要整理本研究方向重點如下: 一、探討UF薄膜分離晶圓切割研磨廢水中矽粉末之效果。 二、探討晶圓切割研磨廢水顆粒大小對UF薄膜阻塞的影響。 三、探討UF薄膜處理晶圓切割研磨廢水之操作參數最佳化。 四、探討UF薄膜處理晶圓切割研磨廢水之整體回收效益。 Owing to environment protection sense getting more and more and so does water resource decrease. Recently electronics industry such as semi-conductor, electro-optical and solar energy all request that waste water, reclaim recovery should comply with regulation 85% by the science park. Under pressure, water reuse issue is getting more notice by government. One of the assembly and testing of semiconductor factory, dicing saw and grinding waste water which get high turbidity, waste water are dissolve SiO2 suspended solid, it could remove by simply physical method, then return to process, reuse, but reclaim waste treatment equipment always would be fouling by the high turbidity, furthermore, the performance of the equipment would be decrease. The dissolving silicon powder almost are nanometer size, it’s chemical feature are stable suspended condition cause not easy get sediment, even using old method doing chemical way, still can’t remove easily, besides would produce mass sludge cause secondary pollution. Therefore, this research focus on the waste water without dosing any chemical, operation, we choose proper UF membrane for the demo pilot. The key point of this research as below: 1. Discuss the effect & performance of UF membrane for separate the silicon, powder, content of wafer dicing saw & grinding waste water. 2. Discuss the influence of the particle size of the wafer dicing saw & grinding waste water fouling on UF membrane. 3. Discuss the best figure to operate the UF membrane to treat wafer dicing saw & grinding waste water. 4. Discuss the profit of the UF membrane to treat the wafer dicing saw & grinding waste water. |
URI: | http://hdl.handle.net/11455/91604 | Rights: | 同意授權瀏覽/列印電子全文服務,2017-07-16起公開。 |
Appears in Collections: | 環境工程學系所 |
Files in This Item:
File | Size | Format | Existing users please Login |
---|---|---|---|
nchu-103-5101063001-1.pdf | 2.24 MB | Adobe PDF | This file is only available in the university internal network |
TAIR Related Article
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.