Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91605
標題: Ni/SiO2殼核觸媒應用於催化模擬廢塑膠氣化之混合氣產氫
Ni/SiO2 core-shell catalysts for catalytic hydrogen production from simulated mixed gas derived from the plastic waste gasification
作者: Li-Ru Xu
徐麗茹
關鍵字: 氫氣;廢塑膠氣化;殼核觸媒;水氣;hydrogen;plastic waste gasification;core-shell catalyst;steam
引用: [1] 張筑暄,碳分子篩選薄膜於生質產氫氣體純化分離之應用,國立中興大學環工所碩士論文,(2011). [2] 經濟部能源局,能源科技研究發展白皮書,(2007). [3] B. Bej, N.C. Pradhan, and S. Neogi, Production of hydrogen by steam reforming of methane over alumina supported nano-NiO/SiO2 catalyst. Catalysis Today, 207(2013)28-35. [4] 陳發林,曲新生,呂錫民,產氫與儲氫技術,五南圖書出版股份有限公司,(2007). [5] 李育明,認識綠色能源「地球暖化,怎麼辦?」系列之二,高雄市政府環境保護局,(2007). [6] 行政院環境保護署,http://www.epa.gov.tw/mp.asp?mp=epa,(2014). [7] C. Wu and P.T. Williams, Hydrogen production by steam gasification of polypropylene with various nickel catalysts. Applied Catalysis B: Environmental, 87(2009)152-161. [8] 林彰泰,高密度聚乙烯摻混回收之研究,行政院國家科學委員會專題研究計畫,(2003). [9] R. Xiao, B. Jin, H. Zhou, Z. Zhong, and M. Zhang, Air gasification of polypropylene plastic waste in fluidized bed gasifier. Energy Conversion and Management, 48(2007)778-786. [10] 再生能源網,再生能源發展條例,(2009). [11] 郭展維,磁場對電解水產氫效率之研究,國立中央大學機械工程學系碩士論文,(2010). [12] Y. Bang, S.J. Han, J. Yoo, J.H. Choi, K.H. Kang, J.H. Song, J.G. Seo, J.C. Jung, and I.K. Song, Hydrogen production by steam reforming of liquefied natural gas (LNG) over trimethylbenzene-assisted ordered mesoporous nickel–alumina catalyst. International Journal of Hydrogen Energy, 38(2013)8751-8758. [13] 鄭加佑,氫氣混合氣注入柴油引擎燃燒室對節能與污染減量之研究,國立中山大學環工所博士論文,(2012). [14] U. Arena, Process and technological aspects of municipal solid waste gasification. Waste Managment, 32(2012)625-639. [15] W. Chen, M. Lin, T. Jiang, and M. Chen, Modeling and simulation of hydrogen generation from high-temperature and low-temperature water gas shift reactions. International Journal of Hydrogen Energy, 33 (2008)6644-6656. [16] O. Bičáková and P. Straka, Production of hydrogen from renewable resources and its effectiveness. International Journal of Hydrogen Energy, 37(2012)11563-11578. [17] 趙裕,甲烷及乙醇重組產氫之研究,國立中央大學環工所博士論文,(2009). [18] 董成祥,電解水產氫之電解液流場效應分析,國立中央大學能源工程所碩士論文,(2008). [19] 宋宛倫,超音波應用對於電解水產氫氣阻現象影響之研究,國立雲林科技大學環境與安全衛生工程所碩士論文,(2008). [20] 曾家麟,光電化學法產氫反應器之設計與熱流特性分析,國立中央大學機械工程學系博士論文,(2011). [21] 吳創之,袁振宏,馬隆龍,生物質能利用原理與技術,化學工業出版社,(2007). [22] 林德建,因應糧食危機下法律措施之研究-兼論我國糧食安全策略,國立臺灣海洋大學海洋法律所碩士論文,(2011). [23] P.T. Williams, Waste Treatment Disposal Williams. John Wiley & Sons, (2005). [24] J. Hopewell, R. Dvorak, and E. Kosior, Plastics recycling: challenges and opportunities. Philosophical Transactions of The Royal Society, 364(2009)2115-2126. [25] 行政院環境保護署,資源回收管理金管理委員會,http://recycle.epa.gov.tw/Recycle/index2.aspx,(2015). [26] 吳耿東,生質能源-化腐朽為能源,科學發展,(2004). [27] M. Pohorely, M. Vosecky, P. Hejdova, M. Puncochar, S. Skoblja, M. Staf, J. Vosta, B. Koutsky, and K. Svoboda, Gasification of coal and PET in fluidized bed reactor. Fuel, 85(2006) 2458-2468. [28] 萬皓鵬,廢棄物衍生燃料的使用,科學發展,(2010). [29] M. He, Z. Hu, B. Xiao, J. Li, X. Guo, S. Luo, F. Yang, Y. Feng, G. Yang, and S. Liu, Hydrogen-rich gas from catalytic steam gasification of municipal solid waste (MSW): Influence of catalyst and temperature on yield and product composition. International Journal of Hydrogen Energy, 34(2009)195-203. [30] S. Luo, B. Xiao, Z. Hu, and S. Liu, Effect of particle size on pyrolysis of single-component municipal solid waste in fixed bed reactor. International Journal of Hydrogen Energy, 35(2010)93-97. [31] S.M. Al-Salem, P. Lettieri, and J. Baeyens, Recycling and recovery routes of plastic solid waste (PSW): a review. Waste Management, 29(2009)2625-2643. [32] U. Arena, L. Zaccariello, and M.L. Mastellone, Tar removal during the fluidized bed gasification of plastic waste. Waste Management, 29 (2009)783-791. [33] 呂錫民,氣化技術,科學發展,(2009). [34] M. He, B. Xiao, Z. Hu, S. Liu, X. Guo, and S. Luo, Syngas production from catalytic gasification of waste polyethylene: Influence of temperature on gas yield and composition. International Journal of Hydrogen Energy, 34(2009) 1342-1348. [35] 陳欣宜,觸媒氣化生質物產氫之研究,國立中興大學環工所碩士論文,(2011). [36] M.P. Aznar, M.A. Caballero, J.A. Sancho, and E. Francés, Plastic waste elimination by co-gasification with coal and biomass in fluidized bed with air in pilot plant. Fuel Processing Technology, 87(2006)409-420. [37] M.L. Mastellone, L. Zaccariello, and U. Arena, Co-gasification of coal, plastic waste and wood in a bubbling fluidized bed reactor. Fuel, 89(2010) 2991-3000. [38] G. Ruoppolo, P. Ammendola, R. Chirone, and F. Miccio, H2-rich syngas production by fluidized bed gasification of biomass and plastic fuel. Waste Management, 32(2012)724-32. [39] J.A. Sancho, M.P. Aznar, and J.M. Toledo, Catalytic Air Gasification of Plastic Waste (Polypropylene) in Fluidized Bed. Part I:  Use of in-Gasifier Bed Additives. Industrial & Engineering Chemistry Research, 47(2008)1005-1010. [40] H.F. Abbas and W.M.A. Wan Daud, Hydrogen production by methane decomposition: A review. International Journal of Hydrogen Energy, 35(2010) 1160-1190. [41] M.-J. Choi and D.-H. Cho, Research Activities on the Utilization of Carbon Dioxide in Korea. Clean, 36(2008)426-432. [42] B. Fidalgo and J.Á. MenÉNdez, Carbon Materials as Catalysts for Decomposition and CO2 Reforming of Methane: A Review. Chinese Journal of Catalysis, 32(2011)207-216. [43] A.W. Budiman, S.-H. Song, T.-S. Chang, C.-H. Shin, and M.-J. Choi, Dry Reforming of Methane Over Cobalt Catalysts: A Literature Review of Catalyst Development. Catalysis Surveys from Asia, 16(2012)183-197. [44] M.A. Naeem, A.S. Al-Fatesh, A.E. Abasaeed, and A.H. Fakeeha, Activities of Ni-based nano catalysts for CO2–CH4 reforming prepared by polyol process. Fuel Processing Technology, 122(2014)141-152. [45] S.M. Sajjadi, M. Haghighi, A.A. Eslami, and F. Rahmani, Hydrogen production via CO2-reforming of methane over Cu and Co doped Ni/Al2O3 nanocatalyst: impregnation versus sol–gel method and effect of process conditions and promoter. Journal of Sol-Gel Science and Technology, 67(2013) 601-617. [46] J.M. Ogden, M.M. Steinbugler, and T.G. Kreutz, A comparison of hydrogen, methanol and gasoline as fuels for fuel cell vehicles: implications for vehicle design and infrastructure development. Journal of Power Sources, 79(1999)143-168. [47] Y. Wang, Y.H. Chin, R.T. Rozmiarek, B.R. Johnson, Y. Gao, J. Watson, A.Y.L. Tonkovich, and D.P. Vander Wiel, Highly active and stable Rh/MgOAl2O3 catalysts for methane steam reforming. Catalysis Today, 98(2004)575-581. [48] H. Song, L. Zhang, R. Watson, D. Braden, and U. Ozkan, Investigation of bio-ethanol steam reforming over cobalt-based catalysts. Catalysis Today, 129(2007)346-354. [49] J.N. Armor, The multiple roles for catalysis in the production of H2. Applied Catalysis A: General, 176(1999)159-176. [50] J. Xu, C.M.Y. Yeung, J. Ni, F. Meunier, N. Acerbi, M. Fowles, and S.C. Tsang, Methane steam reforming for hydrogen production using low water-ratios without carbon formation over ceria coated Ni catalysts. Applied Catalysis A: General, 345(2008)119-127. [51] H.-W. Kim, K.-M. Kang, H.-Y. Kwak, and J.H. Kim, Preparation of supported Ni catalysts on various metal oxides with core/shell structures and their tests for the steam reforming of methane. Chemical Engineering Journal, 168 (2011)775-783. [52] L.S. Carvalho, A.R. Martins, P. Reyes, M. Oportus, A. Albonoz, V. Vicentini, and M.d.C. Rangel, Preparation and characterization of Ru/MgO-Al2O3 catalysts for methane steam reforming. Catalysis Today, 142(2009)52-60. [53] Y. Li, Q. Fu, and M. Flytzani-Stephanopoulos, Low-temperature water-gas shift reaction over Cu- and Ni-loaded cerium oxide catalysts. Applied Catalysis B: Environmental, 27(2000)179-191. [54] Q.F. Yue Li, Maria Flytzani-Stephanopoulos, Low temperature water gas shift reaction over Cu and Ni loaded cerium oxide catalysts. Applied Catalysis B: Environmental, (2000). [55] A. Luengnaruemitchai, S. Osuwan, and E. Gulari, Comparative studies of low-temperature water–gas shift reaction over Pt/CeO2, Au/CeO2, and Au/Fe2O3 catalysts. Catalysis Communications, 4(2003)215-221. [56] O. Levenspiel, Chemical Reaction Engineering. Third edition. Wiley, (1999). [57] J. Wang, G. Cheng, Y. You, B. Xiao, S. Liu, P. He, D. Guo, X. Guo, and G. Zhang, Hydrogen-rich gas production by steam gasification of municipal solid waste (MSW) using NiO supported on modified dolomite. International Journal of Hydrogen Energy, 37(2012)6503-6510. [58] 楊文毅,鈀觸媒氧化焚化廢氣中有機物之研究,國立中興大學環工所碩士論文,(2000). [59] K. Shanmuga Priya, N. Abatzoglou, and S. Blais, Inhibition of carbon formation during steam reforming of methane over ethyldisulfide-impregnated metallic nickel catalysts. Catalysis Today, 207(2013)21-27. [60] J.B. Wang, L.-E. Kuo, and T.-J. Huang, Study of carbon dioxide reforming of methane over bimetallic Ni-Cr/yttria-doped ceria catalysts. Applied Catalysis A: General, 249(2003)93-105. [61] K. Lertwittayanon, D. Atong, P. Aungkavattana, T. Wasanapiarnpong, S. Wada, and V. Sricharoenchaikul, Effect of CaO–ZrO2 addition to Ni supported on γ-Al2O3 by sequential impregnation in steam methane reforming. International Journal of Hydrogen Energy, 35(2010)12277-12285. [62] S.J. Han, Y. Bang, J.G. Seo, J. Yoo, and I.K. Song, Hydrogen production by steam reforming of ethanol over mesoporous Ni–Al2O3–ZrO2 xerogel catalysts: Effect of Zr/Al molar ratio. International Journal of Hydrogen Energy, 38(2013)1376-1383. [63] 曾立德,銅鎳組成觸媒與表面碳物種反應行為,國立中山大學化工所碩士論文,(2003). [64] J. Ashok, M. Subrahmanyam, and A. Venugopal, Hydrotalcite structure derived Ni–Cu–Al catalysts for the production of H2 by CH4 decomposition. International Journal of Hydrogen Energy, 33(2008)2704-2713. [65] I. Rossetti, C. Biffi, C.L. Bianchi, V. Nichele, M. Signoretto, F. Menegazzo, E. Finocchio, G. Ramis, and A. Di Michele, Ni/SiO2 and Ni/ZrO2 catalysts for the steam reforming of ethanol. Applied Catalysis B: Environmental, 117-118(2012)384-396. [66] J.D.A. Bellido, J.E. De Souza, J.-C. M’Peko, and E.M. Assaf, Effect of adding CaO to ZrO2 support on nickel catalyst activity in dry reforming of methane. Applied Catalysis A: General, 358(2009)215-223. [67] K. Urasaki, Y. Sekine, S. Kawabe, E. Kikuchi, and M. Matsukata, Catalytic activities and coking resistance of Ni/perovskites in steam reforming of methane. Applied Catalysis A: General, 286(2005)23-29. [68] S.S. Bharadwaj and L.D. Schmidt, Catalytic partial oxidation of natural gas to syngas. Fuel Processing Technology, 42(1995)109-127. [69] T. Takeguchi, S.-N. Furukawa, M. Inoue, and K. Eguchi, Autothermal reforming of methane over Ni catalysts supported over CaO–CeO2–ZrO2 solid solution. Applied Catalysis A: General, 240(2003)223-233. [70] M. Sanchezsanchez, R. Navarro, and J. Fierro, Ethanol steam reforming over Ni/MxOyNi/MxOy–Al2O3(M=Ce, La, Zr and Mg) catalysts: Influence of support on the hydrogen production. International Journal of Hydrogen Energy, 32(2007)1462-1471. [71] R. Craciun, W. Daniell, and H. Knözinger, The effect of CeO2 structure on the activity of supported Pd catalysts used for methane steam reforming. Applied Catalysis A: General, 230(2002)153-168. [72] T.-J. Huang and T.-C. Yu, Effect of steam and carbon dioxide pretreatments on methane decomposition and carbon gasification over doped-ceria supported nickel catalyst. Catalysis Letters, 102(2005)175-181. [73] F.B. Noronha, E.C. Fendley, R.R. Soares, W.E. Alvarez, and D.E. Resasco, Correlation between catalytic activity and support reducibility in the CO2 reforming of methane over Pt/CexZr1−xO2 catalysts. Chemical Engineering Journal, 82(2001) 21-31. [74] 呂玲儀,多元醇法製備CuCo/Al2O3雙金屬觸媒對去除揮發性有機物之研究,國立中興大學環工所碩士論文,(2000). [75] S. Takenaka, Y. Shigeta, E. Tanabe, and K. Otsuka, Methane decomposition into hydrogen and carbon nanofibers over supported Pd–Ni catalysts. Journal of Catalysis, 220(2003)468-477. [76] C.-C. Chang, C.-C. Hsu, C.-T. Chang, Y.-P. Chen, B.-J. Liaw, and Y.-Z. Chen, Effect of noble metal on oxidative steam reforming of methanol over CuO/ZnO/Al2O3 catalysts. International Journal of Hydrogen Energy, 37(2012)11176-11184. [77] F. Besenbacher, I. Chorkendorff, B.S. Clausen, B. Hammer, A.M. Molenbroek, J.K. N?rskov, and I. Stensgaard, Design of a Surface Alloy Catalyst for Steam Reforming. Science, 279(1998)1913-1915. [78] L. Pleth Nielsen, F. Besenbacher, I. Stensgaard, E. Laegsgaard, C. Engdahl, P. Stoltze, K.W. Jacobsen, and J.K. N?rskov, Initial growth of Au on Ni(110): Surface alloying of immiscible metals. Physical Review Letters, 71(1993)754-757. [79] H. Bengaard, Steam Reforming and Graphite Formation on Ni Catalysts. Journal of Catalysis, 209(2002)365-384. [80] F. Abild-Pedersen, O. Lytken, J. Engbæk, G. Nielsen, I. Chorkendorff, and J.K. N?rskov, Methane activation on Ni(111): Effects of poisons and step defects. Surface Science, 590(2005)127-137. [81] X. Guo, Y. Sun, Y. Yu, X. Zhu, and C.-j. Liu, Carbon formation and steam reforming of methane on silica supported nickel catalysts. Catalysis Communications, 19(2012)61-65. [82] C. Wu, L. Dong, J. Onwudili, P.T. Williams, and J. Huang, Effect of Ni Particle Location within the Mesoporous MCM-41 Support for Hydrogen Production from the Catalytic Gasification of Biomass. ACS Sustainable Chemistry & Engineering, 1(2013)1083-1091. [83] Y. Choi, N.D. Kim, J. Baek, W. Kim, H.J. Lee, and J. Yi, Effect of N2O-mediated calcination on nickel species and the catalytic activity of nickel catalysts supported on γ-Al2O3 in the steam reforming of glycerol. International Journal of Hydrogen Energy, 36(2011)3844-3852. [84] J. Ji, P. Zeng, S. Ji, W. Yang, H. Liu, and Y. Li, Catalytic activity of core–shell structured Cu/Fe3O4@SiO2 microsphere catalysts. Catalysis Today, 158(2010)305-309. [85] H.C. Lee, Y. Potapova, and D. Lee, A core-shell structured, metal–ceramic composite-supported Ru catalyst for methane steam reforming. Journal of Power Sources, 216(2012)256-260. [86] B.S. Kwak, J. Kim, and M. Kang, Hydrogen production from ethanol steam reforming over core–shell structured NixOy–, FexOy–, and CoxOy–Pd catalysts. International Journal of Hydrogen Energy, 35(2010)11829-11843. [87] P.Y. Jia, X.M. Liu, G.Z. Li, M. Yu, J. Fang, and J. Lin, Sol–gel synthesis and characterization of SiO2@CaWO4,SiO2@CaWO4:Eu3+/Tb3+ core–shell structured spherical particles. Nanotechnology, 17(2006)734-742. [88] T.G.P. J.-H. Lee, H.-K. Choi, Development of oral drug delivery system using floating microspheres. Journal of Microencapsulation, 16(1999)715-729. [89] Q. Liu, Z. Xu, J.A. Finch, and R. Egerton, A Novel Two-Step Silica-Coating Process for Engineering Magnetic Nanocomposites. Chemistry of Materials, 10(1998)3936-3940. [90] A.S. Ethiraj, N. Hebalkar, S.K. Kulkarni, R. Pasricha, J. Urban, C. Dem, M. Schmitt, W. Kiefer, L. Weinhardt, S. Joshi, R. Fink, C. Heske, C. Kumpf, and E. Umbach, Enhancement of photoluminescence in manganese-doped ZnS nanoparticles due to a silica shell. The Journal of Chemical Physics, 118(2003) 8945-8953. [91] A.J. Majewski, J. Wood, and W. Bujalski, Nickel–silica core@shell catalyst for methane reforming. International Journal of Hydrogen Energy, 38(2013)14531-14541. [92] B.J. Jankiewicz, D. Jamiola, J. Choma, and M. Jaroniec, Silica-metal core-shell nanostructures. Advances in Colloid Interface Science, 170(2012)28-47. [93] F. Tsagkogeorgas, M. Ochsenkuhn-Petropoulou, R. Niessner, and D. Knopp, Encapsulation of biomolecules for bioanalytical purposes: preparation of diclofenac antibody-doped nanometer-sized silica particles by reverse micelle and sol-gel processing. Analytica Chimica Acta, 573-574 (2006)133-137. [94] F. Cellesi and N. Tirelli, Sol–gel synthesis at neutral pH in W/O microemulsion: A method for enzyme nanoencapsulation in silica gel nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 288(2006)52-61. [95] X.D. Wang, Z.X. Shen, T. Sang, X.B. Cheng, M.F. Li, L.Y. Chen, and Z.S. Wang, Preparation of spherical silica particles by Stober process with high concentration of tetra-ethyl-orthosilicate. Journal of Colloid Interface Science, 341(2010)23-29. [96] I.A. Rahman and V. Padavettan, Synthesis of Silica Nanoparticles by Sol-Gel: Size-Dependent Properties, Surface Modification, and Applications in Silica-Polymer Nanocomposites─A Review. Journal of Nanomaterials, 2012(2012)1-15. [97] H.K. Kammler and S.E. Pratsinis, Electrically-assisted flame aerosol synthesis of fumed silica at high production rates. Chemical Engineering and Processing: Process Intensification, 39(2000)219-227. [98] S.H. Ehrman, S.K. Friedlander, and M.R. Zachariah, Characteristics of SiO2/TiO2 nanocomposite particles formed in a premixed flat flame. Journal of Aerosol Science, 29(1998)687-706. [99] H.D. Jang, H. Chang, Y. Suh, and K. Okuyama, Synthesis of SiO2 nanoparticles from sprayed droplets of tetraethylorthosilicate by the flame spray pyrolysis. Current Applied Physics, 6(2006)110-113. [100] A.B. Corradi, F. Bondioli, A.M. Ferrari, B. Focher, and C. Leonelli, Synthesis of silica nanoparticles in a continuous-flow microwave reactor. Powder Technology, 167(2006)45-48. [101] A.G. Howard and N.H. Khdary, Spray synthesis of monodisperse sub-micron spherical silica particles. Materials Letters, 61(2007)1951-1954. [102] S.L. Chen, Preparation of monosize silica spheres and their crystalline stack. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 142(1998)59-63. [103] H.-C. Wang, C.-Y. Wu, C.-C. Chung, M.-H. Lai, and T.-W. Chung, Analysis of Parameters and Interaction between Parameters in Preparation of Uniform Silicon Dioxide Nanoparticles Using Response Surface Methodology. Industrial & Engineering Chemistry Research, 45(2006)8043-8048. [104] M. Ocana and A.R. Gonzalez-Elipe, Preparation and characterization of uniform spherical silica particles coated with Ni and Co compounds. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 157(1999)315-324. [105] P. Burattin, M. Che, and C. Louis, Metal Particle Size in Ni/SiO2 Materials Prepared by Deposition−Precipitation:  Influence of the Nature of the Ni(II) Phase and of Its Interaction with the Support. The Journal of Physical Chemistry B, 103(1999)6171-6178. [106] M. Yu, H. Wang, C.K. Lin, G.Z. Li, and J. Lin, Sol–gel synthesis and photoluminescence properties of spherical SiO2@LaPO4:Ce3+/Tb3+ particles with a core–shell structure. Nanotechnology, 17(2006)3245-3252. [107] T. Lehmann, T. Wolff, C. Hamel, P. Veit, B. Garke, and A. Seidel-Morgenstern, Physico-chemical characterization of Ni/MCM-41 synthesized by a template ion exchange approach. Microporous and Mesoporous Materials, 151(2012)113-125. [108] 郭茂穗,以不同方法製備稻殼灰分-氧化鋁擔載鎳觸媒之研究,國立中央大學化學工程與材料工程所博士論文,(2003). [109] B. Li, X. Xu, and S. Zhang, Synthesis gas production in the combined CO2 reforming with partial oxidation of methane over Ce-promoted Ni/SiO2 catalysts. International Journal of Hydrogen Energy, 38 (2013)890-900. [110] K. Hadjiivanov, M. Mihaylov, D. Klissurski, P. Stefanov, N. Abadjieva, E. Vassileva, and L. Mintchev, Characterization of Ni/SiO2 Catalysts Prepared by Successive Deposition and Reduction of Ni2+ Ions. Journal of Catalysis, 185(1999)314-323. [111] P. Burattin, M. Che, and C. Louis, Ni/SiO2 Materials Prepared by Deposition−Precipitation:  Influence of the Reduction Conditions and Mechanism of Formation of Metal Particles. The Journal of Physical Chemistry B, 104(2000)10482-10489. [112] C. Zhang, H. Yue, Z. Huang, S. Li, G. Wu, X. Ma, and J. Gong, Hydrogen Production via Steam Reforming of Ethanol on Phyllosilicate-Derived Ni/SiO2: Enhanced Metal–Support Interaction and Catalytic Stability. ACS Sustainable Chemistry & Engineering, 1(2013)161-173. [113] A. Ponzio, S. Kalisz, and W. Blasiak, Effect of operating conditions on tar and gas composition in high temperature air/steam gasification (HTAG) of plastic containing waste. Fuel Processing Technology, 87(2006)223-233. [114] T.-J. Huang, H.-J. Lin, and T.-C. Yu, A Comparison of Oxygen-vacancy Effect on Activity Behaviors of Carbon Dioxide and Steam Reforming of Methane over Supported Nickel Catalysts. Catalysis Letters, 105(2005)239-247. [115] R.J.F. C. H. Bartholomew, Fundamentals of Industrial Catalytic Processes. Wiley, (2006). [116] A.J. Majewski and J. Wood, Tri-reforming of methane over Ni@SiO2 catalyst. International Journal of Hydrogen Energy, 39(2014)12578-12585.
摘要: 
面臨能源短缺的現今,若能以再生利用為導向,即可達到處理廢塑膠與取得再生能源的雙重目標。因此,藉由廢塑膠經氣化技術產生之混合氣為產氫原料,並藉由觸媒催化提高廢塑膠產氫效率,達到廢棄物資源化並同時產生潔淨能源─氫氣的最終目標。
本研究改變製備溶劑(甲醇、乙醇或異丙醇)藉由Stöber 法製備SiO2核顆粒,再以沉積沉澱法製備Ni/SiO2殼核觸媒,並將其應用於催化模擬廢塑膠氣化產生之混合氣產氫,了解核結構合成參數對整體Ni/SiO2殼核觸媒的影響,以獲得良好活性相-擔體鍵結強度、提升金屬活性相分散性與降低活性相晶粒尺寸之目的。亦藉由FESEM、XRD、FTIR、TEM、H2-TPR及BET等儀器分析鑑定觸媒的物化特性。
於Stöber 法的製備程序中改變不同溶劑,因溶劑本身介電常數差異,使SiO2成核過程因靜電斥力與凡得瓦爾力的不同而產生顆粒大小的區別,粒徑大小依序為:SiO2-甲醇 < SiO2-乙醇 < SiO2-異丙醇。甲醇溶劑因介電常數大,能合成出粒徑最小且比表面積大的SiO2顆粒,所以於沉積沉澱法披覆Ni後,能增加Ni於SiO2核上的分散性;由TEM影像可觀察出其Ni金屬顆粒最小;而H2-TPR分析則得到Ni/SiO2-甲醇觸媒,有最佳活性相-擔體作用力,所以相較乙醇和異丙醇製備之Ni/SiO2殼核觸媒,Ni/SiO2-甲醇觸媒有最佳催化產氫活性。
催化模擬廢塑膠氣化產生之混合氣的過程中,水氣含量對重組反應的發生與否扮演重要角色,所以藉由改變進氣組成的水氣添加量(0、0.34、0.75 g-H2O/h),了解水氣含量對催化模擬廢塑膠氣化產生之混合氣產氫的影響。由研究結果得知,0.75 g-H2O/h水氣量相較0 g-H2O/h水氣量,於反應溫度600 oC即可因水氣轉移反應而有氫氣產生;相較於0.34 g-H2O/h,其在700及800oC則因水氣量增加,更有利蒸氣重組產氫反應進行,所以進氣組成的水氣含量為0.75 g-H2O/h水氣量較適宜。
為了進一步證實甲醇溶劑製備之Ni/SiO2殼核觸媒,確實有最佳殼-核作用力,以水氣含量0.75 g-H2O/h於800oC下,進行280分鐘的長時間觸媒穩定反應。由H2-TPR分析得知,因甲醇溶劑製備之Ni/SiO2殼核觸媒,殼核結構間能產生使活性相-擔體有良好作用力的鎳層狀矽酸鹽,所以於280分鐘長時間反應展現較好的穩定性。
研究結果得知,選用介電常數較大的甲醇溶劑製備之Ni/ SiO2殼核觸媒應用於模擬廢塑膠氣化產生之混合氣反應中,能有最佳的催化產氫能力,於800oC且水氣添加量0.75 g-H2O/h的條件下能有181 mmol/g-h產氫率。

Take into consideration of today’s global energy crisis to investage the simultaneous recycling of waste plastic and generation of renewable energy in this study. The mixed gas is created by the gasification of waste plastic to produce the clean energy-hydrogen. The H2 production ability has been considerably increased by using Ni/SiO2 core-shell catalyst.
SiO2 prepared by Stöber process was used as supports to prepare nickel core-shell catalyst. This study evaluated the effect of SiO2 core particles in various solvents (methanol, ethanol and isopropanol) on the morphological features and catalytic performances of Ni/SiO2 core-shell catalysts.
Ni/SiO2 core-shell catalysts were prepared by the deposition-precipitation method and it was applied to generate hydrogen from the simulated mixed gas derived from the plastic waste gasification. Different synthesis parameters on the production of Ni/SiO2 core-shell catalyst were investigated to improve the bonding strength between the Ni active phase and SiO2 support, enhance dispersion of Ni/SiO2 and reduce the the grain size of active phase. The physico-chemical properties of the Ni/SiO2 core-shell catalysts were characterized by means of the FESEM, XRD, FTIR, TEM, H2-TPR, and BET method.
Solvents resulted in different particle size of SiO2 support. Due to the difference in dielectric constants of solvents influenced the SiO2 nucleation process by changing the electrostatic repulsion and Van der Waals force of interaction between particles. The particle size of the prepared SiO2 support is in the order: SiO2-methanol < SiO2-ethanol < SiO2-isopropanol. Because of the bigger dielectric constant of methanol resulted in the smallest particle size and largest specific surface area of SiO2 particles which showed good dispersion of Ni/SiO2 core-shell catalyst and bonding between the Ni active phase and SiO2 support.
Previous researches reported that the amount of steam is a key role in the catalystic gasification plastic waste. Further investigation of feed composition with different amounts (0, 0.34, 0.75 g-H2O/h) effected the hydrogen generation of Ni/SiO2-Methanol catalyst. However, Ni/SiO2- Methanol showed no hydrogen production at 600oC in the absence of steam. The Ni/SiO2-M catalyst can benefit by understanding an incresed H2 production rate at high steam content (0.75 g-H2O/h) because of the water gas shift reaction tending to form H2 from CO and H2O. Besides, steam reforming of methane occurs under a high steam content and at a high reaction temperature.
The stability of Ni/SiO2 catalyst prepared with methanol a long term stability test carried out for 280 minutes with a steam content of 0.75 g-H2O/h at 800oC. The overall research confirmed that the Ni/SiO2 core-shell catalyst prepared with methanol has a strong bonding between the active phase and support due to the abundant formation of nickel phyllosilicates. Ni/SiO2- Methanol exhibited better stability during long term stability test.
Experimental results of hydrogen production indicated that the highest catalytic activity is achieved by Ni/SiO2-Methanol catalyst, which is effective in catalytic H2 production from simulated mixed gas derived from the plastic waste gasification. The hydrogen production rate is 181 mmol/g-h at 800oC and steam content (0.75 g-H2O/h).
URI: http://hdl.handle.net/11455/91605
Rights: 同意授權瀏覽/列印電子全文服務,2018-08-03起公開。
Appears in Collections:環境工程學系所

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-104-7102063011-1.pdf3.46 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.