Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91637
標題: 以乳化液進行底泥中苯(a)駢芘與多溴二苯醚回收與生物降解研究
Emulsion-enabled direct recovery and biodegradation of benzo(a)pyrene and PBDEs in river sediment
作者: Yun-Sung Lo
羅雲松
關鍵字: 底泥;多溴二苯醚;多環芳香烴;化液;生物降解;Polybrominated diphenyl ethers;Polycyclic aromatic hydrocarbons Sediment;Emulsion;Biodegradation
引用: 1. Adriaens, P., Li, M. Y., & Michalak, A. (2006). Scaling methods of sediment bioremediation processes and applications. Engineering in Life Sciences, 6(3), 217-227. 2. Alaee, M., Arias, P., Sjödin, A., & Bergman, Å . (2003). An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release. Environment International, 29(6), 683-689. 3. Aldrich, H. a. (2010). IN SITU SEDIMENT CAPPING. 4. Alexander, M. (1994). Biodegradation and bioremediation: Academic Press Inc. 5. Arienzo, M. (2000). Degradation of 2, 4, 6-trinitrotoluene in water and soil slurry utilizing a calcium peroxide compound. Chemosphere, 40(4), 331-337. 6. Bi, X., Qu, W., Sheng, G., Zhang, W., Mai, B., Chen, D., . . . Fu, J. (2006). Polybrominated diphenyl ethers in South China maternal and fetal blood and breast milk. Environmental pollution, 144(3), 1024-1030. 7. Bianchi‐Mosquera, G. C., Allen‐King, R. M., & Mackay, D. M. (1994). Enhanced Degradation of Dissolved Benzene and Toluene Using a Solid Oxygen‐Releasing Compound. Ground Water Monitoring & Remediation, 14(1), 120-128. 8. Binelli, A., Sarkar, S. K., Chatterjee, M., Riva, C., Parolini, M., Bhattacharya, A. K., & Satpathy, K. K. (2007). Concentration of polybrominated diphenyl ethers (PBDEs) in sediment cores of Sundarban mangrove wetland, northeastern part of Bay of Bengal (India). Marine pollution bulletin, 54(8), 1220-1229. 9. Branchi, I., Capone, F., Alleva, E., & Costa, L. G. (2003). Polybrominated diphenyl ethers: neurobehavioral effects following developmental exposure. Neurotoxicology, 24(3), 449-462. 10. Canada, E. ( 2006 ) . CEPA Ecological screening assessment report on polybrominated diphenyl ethers ( PBDEs ) . http://www.ec.gc.ca/lcpe-cepa/default.asp?lang=En&n=0DDA2F24-1&offset=3&t oc=show, pp 4-7. 11. Cassidy, D. P., & Irvine, R. L. (1999). Use of calcium peroxide to provide oxygen for contaminant biodegradation in a saturated soil. Journal of hazardous materials, 69(1), 25-39. 12. Cerniglia, C., & Yang, S. (1984). Stereoselective metabolism of anthracene and phenanthrene by the fungus Cunninghamella elegans. Applied and environmental microbiology, 47(1), 119-124. 13. Chen, C.-W., Kao, C.-M., Chen, C.-F., & Dong, C.-D. (2007). Distribution and accumulation of heavy metals in the sediments of Kaohsiung Harbor, Taiwan. Chemosphere, 66(8), 1431-1440. 14. Chen, D., & Hale, R. C. (2010) A global review of polybrominated diphenyl ether. flame retardant contamination in birds. Environment International, 36(7) 800-811., 15. Costa, L. G., & Giordano, G. ( 2007 ) . Developmental neurotoxicity of polybrominated diphenyl ether (PBDE) flame retardants. Neurotoxicology, 28 6)( , 1047-1067. 16. de Wit, C. A. (2002). An overview of brominated flame retardants in the environment. Chemosphere, 46(5), 583-624. 17. EPA, U. (2005) Contaminated sediment remediation guidance for hazardous waste. sites. Office of Solid Waste and Emergency Response: Washington, DC. 18. Evans, W., Fernley, H., & Griffiths, E. ( 1965 ) . Oxidative metabolism of phenanthrene and anthracene by soil pseudomonads. The ring-fission mechanism. Biochem. J, 95, 819-831. 19. Fernandez, P., André, V., Rieger, J., & Kühnle, A. (2004). Nano-emulsion formation by emulsion phase inversion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 251(1), 53-58. 20. Gibson, D., Koch, J., & Kallio, R. (1968). Oxidative degradation of aromatic hydrocarbons by microorganisms. I. Enzymic formation of catechol from benzene. Biochemistry, 7(7), 2653-2662. 21. Grifoll, M., Casellas, M., Bayona, J., & Solanas, A. M. (1992). Isolation and characterization of a fluorene-degrading bacterium: identification of ring oxidation and ring fission products. Applied and environmental microbiology, 58(9), 2910-2917. 22. Grifoll, M., Selifonov, S., & Chapman, P. J. (1994) Evidence for a novel pathway. in the degradation of fluorene by Pseudomonas sp. strain F274. Applied and environmental microbiology, 60(7), 2438-2449. 23. Grifoll, M., Selifonov, S. A., Gatlin, C. V., & Chapman, P. J. (1995). Actions of a versatile fluorene-degrading bacterial isolate on polycyclic aromatic compounds. Applied and environmental microbiology, 61(10), 3711-3723. 24. Gundersen, J. L., MacIntyre, W. G., & Hale, R. C. (1996). pH-dependent sorption of chlorinated guaiacols on estuarine sediments: The effects of humic acids and TOC. Environmental science & technology, 31(1), 188-193. 25. Haritash, A., & Kaushik, C. (2009) Biodegradation aspects of polycyclic aromatic. hydrocarbons (PAHs): a review. Journal of hazardous materials, 169(1), 1-15. 26. Huang, H.-W., Chang, B.-V., & Lee, C.-C. (2014). Reductive debromination of decabromodiphenyl ether by anaerobic microbes from river sediment. International Biodeterioration & Biodegradation, 87, 60-65. 27. Huang, K.-M., & Lin, S. (2003). Consequences and implication of heavy metal spatial variations in sediments of the Keelung River drainage basin, Taiwan. Chemosphere, 53(9), 1113-1121. 28. Huang, L., Pu, X., Pan, J.-F., & Wang, B. (2013). Heavy metal pollution status in surface sediments of Swan Lake lagoon and Rongcheng Bay in the northern Yellow Sea. Chemosphere, 93(9), 1957-1964. 29. Jerina, D., Selander, H., Yagi, H., Wells, M. C., Davey, J., Mahadevan, V., & Gibson, D. (1976). Dihydrodiols from anthracene and phenanthrene. Journal of the American Chemical Society, 98(19), 5988-5996. 30. Jonsson, B. (1998). Surfactants and polymers in aqueous solution: John Wiley & Sons. 31. Juhasz, A. L., & Naidu, R. (2000). Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo (a) pyrene. International Biodeterioration & Biodegradation, 45(1), 57-88. 32. Keum, Y.-S., & Li, Q. X. (2005). Reductive debromination of polybrominated diphenyl ethers by zerovalent iron. Environmental science & technology, 39(7), 2280-2286. 33. Law, R. J., Allchin, C. R., De Boer, J., Covaci, A., Herzke, D., Lepom, P., . . . De Wit, C. A. (2006). Levels and trends of brominated flame retardants in the European environment. Chemosphere, 64(2), 187-208. 34. Legler, J., & Brouwer, A. (2003). Are brominated flame retardants endocrine disruptors? Environment International, 29(6), 879-885. 35. McDonald, T. A. (2002). A perspective on the potential health risks of PBDEs. Chemosphere, 46(5), 745-755. 36. Meerts, I., Letcher, R. J., Hoving, S., Marsh, G., Bergman, A., Lemmen, J. G., . . . Brouwer, A. (2001). In vitro estrogenicity of polybrominated diphenyl ethers, hydroxylated PDBEs, and polybrominated bisphenol A compounds. Environmental health perspectives, 109(4), 399. 37. Moon, H.-B., Kannan, K., Choi, M., & Choi, H.-G. (2007). Polybrominated diphenyl ethers (PBDEs) in marine sediments from industrialized bays of Korea. Marine pollution bulletin, 54(9), 1402-1412. 38. Moon, H.-B., Kannan, K., Lee, S.-J., & Choi, M. (2007). Atmospheric deposition of polybrominated diphenyl ethers ( PBDEs ) in coastal areas in Korea. Chemosphere, 66(4), 585-593. 39. Netzband. (2002). Treatment and Confined Disposal of Dredged Material. 40. Nose, K., Hashimoto, S., Takahashi, S., Noma, Y., & Sakai, S.-i. (2007). Degradation pathways of decabromodiphenyl ether during hydrothermal treatment. Chemosphere, 68(1), 120-125. 41. Nykänen, A., Kontio, H., Klutas, O., Penttinen, O.-P., Kostia, S., Mikola, J., & Romantschuk, M. (2012) Increasing lake water and sediment oxygen levels using. slow release peroxide. Science of the Total Environment, 429, 317-324. 42. Oros, D. R., Ross, J. R., Spies, R. B., & Mumley, T. (2007). Polycyclic aromatic hydrocarbon (PAH) contamination in San Francisco Bay: a 10-year retrospective of monitoring in an urbanized estuary. Environmental research, 105(1), 101-118. 43. Palermo, M. R., Schroeder, P. R., Estes, T. J., & Francingues, N. R. (2008). Technical guidelines for environmental dredging of contaminated sediments: DTIC Document. 44. Rochkind, M. L., Blackburn, J. W., & Sayler, G. S. ( 1986 ) . Microbial decomposition of chlorinated aromatic compounds: National Technical Information Service. 45. Schmidtke, T., White, D., & Woolard, C. (1999). Oxygen release kinetics from solid phase oxygen in Arctic Alaska. Journal of hazardous materials, 64(2), 157-165. 46. Shi, G., Yin, H., Ye, J., Peng, H., Li, J., & Luo, C. ( 2013 ) . Aerobic biotransformation of decabromodiphenyl ether (PBDE-209) by Pseudomonas aeruginosa. Chemosphere, 93(8), 1487-1493. 47. Shih, Y.-h., Chou, H.-L., Peng, Y.-H., & Chang, C.-y. (2012). Synergistic effect of microscale zerovalent iron particles combined with anaerobic sludges on the degradation of decabromodiphenyl ether. Bioresource technology, 108, 14-20. 48. Sjödin, A., Patterson Jr, D. G., & Bergman, Å . (2003). A review on human exposure to brominated flame retardants—particularly polybrominated diphenyl ethers. Environment International, 29(6), 829-839. 49. Thayer, K., Marsh, G., Bergman, A., Dahiya, R., & Cunha, G. (2000). Effects of Polybrominated Diphenyl Ethers (PBDEs) on Neonatal Rat Ventral Prostate Grown in Culture. 50. Tokarz Iii, J. A., Ahn, M.-Y., Leng, J., Filley, T. R., & Nies, L. (2008). Reductive debromination of polybrominated diphenyl ethers in anaerobic sediment and a biomimetic system. Environmental science & technology, 42(4), 1157-1164. 51. Vesper, S. J., Murdoch, L. C., Hayes, S., & Davis-Hoover, W. J. (1994). Solid oxygen source for bioremediation in subsurface soils. Journal of hazardous materials, 36(3), 265-274. 52. Wang, Y.-f., Wu, Y., Pi, N., & Tam, N. F.-y. (2014). Investigation of microbial community structure in constructed mangrove microcosms receiving wastewater-borne polycyclic aromatic hydrocarbons (PAHs) and polybrominated diphenyl ethers (PBDEs). Environmental pollution, 187, 136-144. 53. Watanabe, I., & Sakai, S.-i. (2003). Environmental release and behavior of brominated flame retardants. Environment International, 29(6), 665-682. 54. Zhao, Y.-X., Qin, X.-F., Li, Y., Liu, P.-Y., Tian, M., Yan, S.-S., . . . Yang, Y.-J. (2009). Diffusion of polybrominated diphenyl ether (PBDE) from an e-waste recycling area to the surrounding regions in Southeast China. Chemosphere, 76 11)( , 1470-1476.
摘要: 
目前台灣河川底泥污染情形面臨越來越嚴重之趨勢,其污染種類大多包括重金屬、多氯聯苯、多溴二苯醚(polybrominated diphenyl ethers, PBDEs)、多環芳香烴(polycyclic aromatic hydrocarbons, PAHs)等。而現今我國針對河川底泥整治技術尚未有一套完善技術,且又礙於台灣之河川地形特殊,若直接使用國外之底泥整治技術,其效果恐不佳。本研究中提出利用大豆油乳化液針對受到 PBDEs 和PAHs 污染之底泥進行直接回收及加強生物分解,藉由大豆油提供油相及當作電子供給者,促使污染物直接分布於油相中並刺激微生物進行還原脫溴作用。本研究以位於台南市附近之二仁溪之嚴重污染為目標,進行實驗室內之批次試驗及現地之模場試驗。本試驗所使用之乳化液其主要以食品級界面活性劑、大豆油及水三種成分製備而成。本試驗以 BDE47、BDE99 與 BDE209 作為多溴二苯醚污染物以及苯(a)駢芘作為多環芳香烴之模擬污染物。

本研究之最佳破乳回收條件為使用高油量乳化液注入底泥中,充分攪拌並靜置數分鐘後,再加入固定濃度之碳酸鈉破乳劑,並充分攪拌後靜置數分鐘後,再曝氮氣數分鐘後,等待乳化液破乳並回收浮油。模場試驗分為自然復育、厭氧分解、好氧分解、厭氧-好氧循環處理之四大類別進行生物降解比較,依據研究結果顯示:乳化液破乳回收相對於現地底泥中 BDE209 存在底泥中時間較長且其極度的疏水特性導致其回收效果較差,其去除率約 10~61%;而現地底泥中 BDE47、BDE99 之回收效果較佳,單次操作去除率平均可達 46~92%;另一污染物 BaP 於現地底泥中回收效果也較 BDE209 顯著,回收率約 50%;生物降解部分,有添加乳化液之組別的確有增強生物降解之情況,顯示添加乳化液仍有助於 PBDEs 及BaP 之降解。但高溴數之 BDE209 在已經添加乳化液情況下仍較 BDE47 及 BDE99難以降解。

River sediment pollution is worsened in recent year in Taiwan. Contaminations include heavy metals, polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and polycyclic aromatic hydrocarbons (PAHs). Up to now, no effective sediment remediation technology is available due to the special hydrogeological conditions in Taiwan. In this study, we propose to directly recover PBDEs and PAHs from contaminated river sediment using a soy-bean oil emulsion and let the residual soy-bean oil play the role of electron donor for biological reductive debromination. This study includes in-lab batch tests and a field pilot-study to prove the feasibility to remediate sediment of Er-Ren Rvier heavily contaminated by PBDEs and PAHs in Tainan, Taiwan. The composition of this emulsion is food-grade surfactant, soybean oil, and water. Due to high logKow values of PBDEs, it should be feasible to directly recover them from sediments and enhance microbial biodegradation of them by using residual soybean oil as electron donors. In this study, three PBDEs, BDE-47, BDE-99 and BDE-209, were employed as modeled PBDE contaminants, and benzo(a)pyrene (BaP) as a representative PAH contaminant.

From this study, the best recovery conditions are defined as follows. Hihg oil content emulsion is better than other emulsions. For deemulsification of the sediment mixture, after a stirring mixing with emulsion and left without disturbance, then mixing with carbonate solution as demulsification agent and a subsequent 30-minute sparging with nitrogen gas were performed. For the pilot study, five experimental combinations were tested, i.e., natural recovery, anaerobic biodegradation, aerobic biodegradation sequential anaerobic-aerobic biodegradation, and field control. The results showed that the direct recovery of BDE47 and BDE99 is within the range of 46%-92% and that of BDE 209 is 10-61%. This direct recovery method also works to BaP with about 50% removal. Emulsion amendment did improve the reductive dechlorination of PBDEs and the degradation of BaP. However, BDE-209 is still the hardest to be biodegraded.
URI: http://hdl.handle.net/11455/91637
Rights: 不同意授權瀏覽/列印電子全文服務
Appears in Collections:環境工程學系所

Files in This Item:
File SizeFormat Existing users please Login
nchu-103-7101063016-1.pdf6.52 MBAdobe PDFThis file is only available in the university internal network   
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.