Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91644
標題: 以奈米生物操控法去除優養化水體中微囊藻及其藻毒之研究
Nanobiomanipulation for removal of Microcystis aeruginosa and microcystins in eutrophic water bodies
作者: Fang-Ko Hsiao
蕭方歌
關鍵字: 奈米過氧化鈣;微囊藻;微囊藻毒素;生長抑制;生物操控法;calcium peroxide nanoparticle;microcystis sp;microcystins;growth inhibition;biomaniulation
引用: Abeliovich, A. t., & Shilo, M. (1972). Photooxidative death in blue-green algae. Journal of bacteriology, 111(3), 682-689. Ahn, C.-Y., Joung, S.-H., Jeon, J.-W., Kim, H.-S., Yoon, B.-D., & Oh, H.-M. (2003). Selective control of cyanobacteria by surfactin-containing culture broth of Bacillus subtilis C1. Biotechnology letters, 25(14), 1137-1142. Anderson, D. M., & Morel, F. M. (1978). Copper sensitivity of Gonyaulax tamarensis. Limnol Oceanogr, 23(2), 283-295. Aoi, T., & Hayashi, T. (1996). Nutrient removal by water lettuce (< i> Pisitia stratiotes</i>). Water science and technology, 34(7), 407-412. Appel, H. M. (1993). Phenolics in ecological interactions: the importance of oxidation. Journal of Chemical Ecology, 19(7), 1521-1552. BAEK, S.-H., SUN, X.-X., LEE, Y.-J., WANG, S.-Y., HAN, K.-N., CHOI, J.-K., KIM, E.-K. (2003). Mitigation of harmful algal blooms by sophorolipid. Journal of microbiology and biotechnology, 13(5), 651-659. Barrington, D. J., Reichwaldt, E. S., & Ghadouani, A. (2013). The use of hydrogen peroxide to remove cyanobacteria and microcystins from waste stabilization ponds and hypereutrophic systems. Ecological Engineering, 50, 86-94. Bernhardt, H. (1984). Treatment disturbances with water out of eutrophic reservoirs as a consequence of extensive algal development. Water Supply, 2(3/4), 7-15. Bernstein, I. L., & Safferman, R. (1973). Clinical sensitivity to green algae demonstrated by nasal challenge and in vitro tests of immediate hypersensitivity. Journal of Allergy and Clinical Immunology, 51(1), 22-28. Bianchi‐Mosquera, G. C., Allen‐King, R. M., & Mackay, D. M. (1994). Enhanced Degradation of Dissolved Benzene and Toluene Using a Solid Oxygen‐Releasing Compound. Groundwater Monitoring & Remediation, 14(1), 120-128. Bláha, L., Babi a, P., & Maršálek, B. (2009). Toxins produ ed in yanoba terial water blooms-toxicity and risks. Interdisciplinary toxicology, 2(2), 36-41. Bláhová, L., Babica, P., Maršálková, E., Maršálek, B., & Bláha, L. (2007). Concentrations and seasonal trends of extracellular microcystins in freshwaters of the Czech Republic–results of the national monitoring program. CLEAN–Soil, Air, Water, 35(4), 348-354. Blom, J., Robinson, J., & Jüttner, F. (2001). High grazer toxicity of [D-Asp3,(E)-Dhb7] microcystin-RR of Planktothrix rubescens as compared to different microcystins. Toxicon, 39(12), 1923-1932. Brookes, J. D., & Carey, C. C. (2011). Nutrient Pollution has serious consequences. Science, 334(6052), 46-47. Brown, R., & Kelly, F. (1996). Peroxides and other products. Free Radicals, a practical approach, 119-131. Caffrey, J., & Monahan, C. (1999). Filamentous algal control using barley straw. Hydrobiologia, 415, 315-318. Carmichael, W. W., Azevedo, S., An, J. S., Molica, R., Jochimsen, E. M., Lau, S., . . . Eaglesham, G. K. (2001). Human fatalities from cyanobacteria: chemical and biological evidence for cyanotoxins. Environmental health perspectives, 109(7), 663. Choe, S., & Jung, I. (2002). Growth inhibition of freshwater algae by ester compounds released from rotted plants. Journal of Industrial and Engineering Chemistry, 8(4), 297-304. Choi, O., Deng, K. K., Kim, N.-J., Ross Jr, L., Surampalli, R. Y., & Hu, Z. (2008). The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Research, 42(12), 3066-3074. Choi, Y. S., & Kim, B. W. (2000). Photocatalytic disinfection of E coli in a UV/TiO2 immobilised optical‐fibre reactor. Journal of Chemical Technology and Biotechnology, 75(12), 1145-1150. Chorus, I. (2001). Cyanotoxins: occurrence, causes, consequences: Springer Berlin. Chorus, I., & Bartram, J. (1999). Toxic cyanobacteria in water: A guide to their public health consequences, monitoring and management: Spon Press. Chow, C., House, J., Velzeboer, R., Drikas, M., Burch, M., & Steffensen, D. (1998). The effect of ferric chloride flocculation on cyanobacterial cells. Water Research, 32(3), 808-814. Chu, C.-C., Chiang, M.-L., Tsai, C.-M., & Lin, J.-J. (2005). Exfoliation of montmorillonite clay by mannich polyamines with multiple quaternary salts. Macromolecules, 38(15), 6240-6243. Codd, G. A., Morrison, L. F., & Metcalf, J. S. (2005). Cyanobacterial toxins: risk management for health protection. Toxicology and applied pharmacology, 203(3), 264-272. Cooke, G. D., Welch, E. B., Martin, A. B., Fulmer, D. G., Hyde, J. B., & Schrieve, G. D. (1993). Effectiveness of Al, Ca, and Fe salts for control of internal phosphorus loading in shallow and deep lakes. Paper presented at the Proceedings of the Third International Workshop on Phosphorus in Sediments. de Nicola Giudici, M., Migliore, L., Gambardella, C., & Marotta, A. (1988). Effect of chronic exposure to cadmium and copper on Asellus aquaticus (L.)(Crustacea, Isopoda). Hydrobiologia, 157(3), 265-269. DeBusk, T. A., Peterson, J. E., & Ramesh Reddy, K. (1995). Use of aquatic and terrestrial plants for removing phosphorus from dairy wastewaters. Ecological Engineering, 5(2), 371-390. Dietrich, A., Hoehn, R., Dufresne, L., Buffin, L., Rashash, D., & Parker, B. (1995). Oxidation of odorous and nonodorous algal metabolites by permanganate, chlorine, and chlorine dioxide. Water science and technology, 31(11), 223-228. Drikas, M., Newcombe, G., & Nicholson, B. (2001). Water treatment options for cyanobacteria and their toxins. Paper presented at the Proceedings of AWWA-Water Quality Technology Conference (WQTC). Dunlop, P., Byrne, J., Manga, N., & Eggins, B. (2002). The photocatalytic removal of bacterial pollutants from drinking water. Journal of photochemistry and photobiology A: Chemistry, 148(1), 355-363. Edwards, C., Graham, D., Fowler, N., & Lawton, L. A. (2008). Biodegradation of microcystins and nodularin in freshwaters. Chemosphere, 73(8), 1315-1321. Eriksson, J., Toivola, D., Meriluoto, J., Karaki, H., Han, Y., & Hartshorne, D. (1990). Hepatocyte deformation induced by cyanobacterial toxins reflects inhibition of protein phosphatases. Biochemical and biophysical research communications, 173(3), 1347-1353. Everall, N., & Lees, D. (1996). The use of barley-straw to control general and blue-green algal growth in a Derbyshire reservoir. Water Research, 30(2), 269-276. Everall, N., & Lees, D. (1997). The identification and significance of chemicals released from decomposing barley straw during reservoir algal control. Water Research, 31(3), 614-620. Falconer, I. R. (2005). Cyanobacteria‐Toxins in Drinking Water: Wiley Online Library. Fastner, J., Heinze, R., & Chorus, I. (1995). Microcystin-content, hepatotoxicity and cytotoxicity of cyanobacteria in some German water bodies. Water science and technology, 32(4), 165-170. Feng, C., Sugiura, N., Masaoka, Y., & Maekawa, T. (2005). Electrochemical degradation of microcystin-LR. Journal of Environmental Science and Health, 40(2), 453-465. Ferguson, J. F., & McCarty, P. L. (1971). Effects of carbonate and magnesium on calcium phosphate precipitation. Environmental science & technology, 5(6), 534-540. Ferrier, M., Butler Sr, B., Terlizzi, D., & Lacouture, R. (2005). The effects of barley straw (Hordeum vulgare) on the growth of freshwater algae. Bioresource technology, 96(16), 1788-1795. Gan, L., Zuo, J., Xie, B., Li, P., & Huang, X. (2012). Zeolite (Na) modified by nano-Fe particles adsorbing phosphate in rainwater runoff. Journal of Environmental Sciences, 24(11), 1929-1933. Gibson, M., Welch, I., Barrett, P., & Ridge, I. (1990). Barley straw as an inhibitor of algal growth II: laboratory studies. Journal of applied Phycology, 2(3), 241-248. Gopal, B., & Goel, U. (1993). Competition and allelopathy in aquatic plant communities. The Botanical Review, 59(3), 155-210. Gulati, R. D., Dionisio Pires, L. M., & Van Donk, E. (2008). Lake restoration studies: Failures, bottlenecks and prospects of new ecotechnological measures. Limnologica – Ecology and Management of Inland Waters, 38(3-4), 233-247. doi: 10.1016/j.limno.2008.05.008 Gustafsson, S., Hultberg, M., Figueroa, R. I., & Rengefors, K. (2009). On the control of HAB species using low biosurfactant concentrations. Harmful Algae, 8(6), 857-863. Haider, S., Naithani, V., Viswanathan, P., & Kakkar, P. (2003). RETRACTED: Cyanobacterial toxins: a growing environmental concern. Chemosphere, 52(1), 1-21. Hanh, D. N., Rajbhandari, B. K., & Annachhatre, A. P. (2005). Bioremediation of sediments from intensive aquaculture shrimp farms by using calcium peroxide as slow oxygen release agent. Environ Technol, 26(5), 581-589.doi: 10.1080/09593332608618543 Hanson, M. J., & Stefan, H. G. (1984). SIDE EFFECTS OF 58 YEARS OF COPPER SULFATE TREATMENT OF THE FAIRMONT LAKES, MINNESOTA1: Wiley Online Library. Harrison, F. L., Knezovich, J. P., & Rice Jr, D. W. (1984). The toxicity of copper to the adult and early life stages of the freshwater clam, Corbicula manilensis. Archives of Environmental Contamination and Toxicology, 13(1), 85-92. Hitzfeld, B. C., Höger, S. J., & Dietrich, D. R. (2000). Cyanobacterial toxins: removal during drinking water treatment, and human risk assessment. Environmental health perspectives, 108(Suppl 1), 113. Ho, L., Meyn, T., Keegan, A., Hoefel, D., Brookes, J., Saint, C. P., & Newcombe, G. (2006). Bacterial degradation of microcystin toxins within a biologically active sand filter. Water Research, 40(4), 768-774. Ho, S.-H., Chen, C.-Y., Lee, D.-J., & Chang, J.-S. (2011). Perspectives on microalgal CO2 emission mitigation systems—A review. Biotechnology advances, 29(2), 189-198. Hoeger, S. J., Shaw, G., Hitzfeld, B. C., & Dietrich, D. R. (2004). Occurrence and elimination of cyanobacterial toxins in two Australian drinking water treatment plants. Toxicon, 43(6), 639-649. Hong, Y., Hu, H.-Y., Xie, X., Sakoda, A., Sagehashi, M., & Li, F.-M. (2009). Gramine-induced growth inhibition, oxidative damage and antioxidant responses in freshwater cyanobacterium< i> Microcystis aeruginosa</i>. Aquatic Toxicology, 91(3), 262-269. Hummert, C., Dahlmann, J., Reichelt, M., & Luckas, B. (2001). Analytical techniques for monitoring harmful cyanobacteria in lakes. Lakes & Reservoirs: Research & Management, 6(2), 159-168. Jensen, H. S., & Andersen, F. O. (1992). Importance of temperature, nitrate, and pH for phosphate release from aerobic sediments of four shallow, eutrophic lakes. Limnology and Oceanography, 37(3), 577-589. Jia, Y., Yang, Z., Su, W., Johnson, D., & Kong, F. (2014). Controlling of cyanobacteria bloom during bottleneck stages of algal cycling in shallow Lake Taihu (China). Journal of Freshwater Ecology, 29(1), 129-140. Johnson, B., Gong, B., Bellamy, W., & Tran, T. (1995). Pilot plant testing of dissolved air flotation for treating Bostons low-turbidity surface water supply. Water science and technology, 31(3), 83-92. Jurczak, T., Tarczynska, M., Izydorczyk, K., Mankiewicz, J., Zalewski, M., & Meriluoto, J. (2005). Elimination of microcystins by water treatment processes—examples from Sulejow Reservoir, Poland. Water Research, 39(11), 2394-2406. Kao, C., Chen, S., & Su, M. (2001). Laboratory column studies for evaluating a barrier system for providing oxygen and substrate for TCE biodegradation. Chemosphere, 44(5), 925-934. Kao, C., Chen, S., Wang, J., Chen, Y., & Lee, S. (2003). Remediation of PCE-contaminated aquifer by an in situ two-layer biobarrier: laboratory batch and column studies. Water Research, 37(1), 27-38. Kao, C., & Lei, S. (2000). Using a peat biobarrier to remediate PCE/TCE contaminated aquifers. Water Research, 34(3), 835-845. Kleiner, J. (1988). Coprecipitation of phosphate with calcite in lake water: a laboratory experiment modelling phosphorus removal with calcite in Lake Constance. Water Research, 22(10), 1259-1265. Lalezary, S., Pirbazari, M., & McGuire, M. J. (1986). Oxidation of five earthy-musty taste and odor compounds. Journal (American Water Works Association), 62-69. Liere, L., & Gulati, R. D. (1992). Restoration and recovery of shallow eutrophic lake ecosystems in the Netherlands: epilogue. Hydrobiologia, 233(1), 283-287. Liu, G., Fan, C., Zhong, J., Zhang, L., Ding, S., Yan, S., & Han, S. (2010). Using hexadecyl trimethyl ammonium bromide (CTAB) modified clays to clean the< i> Microcystis aeruginosa</i> blooms in Lake Taihu, China. Harmful Algae, 9(4), 413-418. Liu, Y., Gan, X., Zhou, B., Xiong, B., Li, J., Dong, C., . . . Cai, W. (2009). Photoelectrocatalytic degradation of tetracycline by highly effective TiO nanopore arrays electrode. Journal of Hazardous Materials, 171(1), 678-683. Liu, Y., Song, L., Li, X., & Liu, T. (2002). The toxic effects of microcystin-LR on embryo-larval and juvenile development of loach,< i> Misguruns mizolepis Gunthe. Toxicon, 40(4), 395-399. Maatouk, ., Boua ha, N., Fontan, D., & Levi, Y. (2002). Seasonal variation of microcystin concentrations in the Saint-Caprais reservoir (France) and their removal in a small full-scale treatment plant. Water Research, 36(11), 2891-2897. Maizels, M., & Budde, W. L. (2004). A LC/MS method for the determination of cyanobacteria toxins in water. Analytical chemistry, 76(5), 1342-1351. Mouchet, P., & Bonnélye, V. (1998). Solving algae problems: French expertise and world-wide applications. Aqua, 47, 125-141. Muchmore, C. B. (1978). Algae control in water-supply reservoirs. Journal (American Water Works Association), 273-279. Mulligan, C. N. (2005). Environmental applications for biosurfactants. Environmental Pollution, 133(2), 183-198. Nakai, S., Inoue, Y., Hosomi, M., & Murakami, A. (2000). Myriophyllum spicatum-released allelopathic polyphenols inhibiting growth of blue-green algae Microcystis aeruginosa</i>. Water Research, 34(11), 3026-3032. Newcombe, G., & Nicholson, B. (2004). Water treatment options for dissolved cyanotoxins. Aqua, 53, 227-239. Newman, J. R., & Barrett, P. (1993). Control of Microcystis aeruginosa by decomposing barley straw. Journal of aquatic plant management, 31, 203-203. Nielsen, L. E., Kadavy, D. R., Rajagopal, S., Drijber, R., & Nickerson, K. W. (2005). Survey of extreme solvent tolerance in gram-positive cocci: membrane fatty acid changes in Staphylococcus haemolyticus grown in toluene. Applied and environmental microbiology, 71(9), 5171-5176. Nor, Y. M. (1987). Ecotoxicity of copper to aquatic biota: a review. Environmental research, 43(1), 274-282. Nykanen, A., Kontio, H., Klutas, O., Penttinen, O. P., Kostia, S., Mikola, J., & Romantschuk, M. (2012). Increasing lake water and sediment oxygen levels using slow release peroxide. Sci Total Environ, 429, 317-324. doi: 10.1016/j.scitotenv.2012.04.044 Pan, G., Zou, H., Chen, H., & Yuan, X. (2006). Removal of harmful cyanobacterial blooms in Taihu Lake using local soils III. Factors affecting the removal efficiency and an in situ field experiment using chitosan-modified local soils. Environmental Pollution, 141(2), 206-212. Park, M.-H., Kim, K.-H., Lee, H.-H., Kim, J.-S., & Hwang, S.-J. (2010). Selective inhibitory potential of silver nanoparticles on the harmful cyanobacterium Microcystis aeruginosa. Biotechnology letters, 32(3), 423-428. Peller, J. R., Whitman, R. L., Griffith, S., Harris, P., Peller, C., & Scalzitti, J. (2007). TiO2 as a photocatalyst for control of the aquatic invasive alga, Cladophora, under natural and artificial light. Journal of photochemistry and photobiology A: Chemistry, 186(2), 212-217. Peterson, H. G., Hrudey, S. E., Cantin, I. A., Perley, T. R., & Kenefick, S. L. (1995). Physiological toxicity, cell membrane damage and the release of dissolved organic carbon and geosmin by Aphanizomenon flos-aquae after exposure to water treatment chemicals. Water Research, 29(6), 1515-1523. Pierce, R. H., Henry, M. S., Higham, C. J., Blum, P., Sengco, M. R., & Anderson, D. M. (2004). Removal of harmful algal cells (Karenia brevis) and toxins from seawater culture by clay flocculation. Harmful Algae, 3(2), 141-148. Prepas, E. E., Babin, J., Murphy, T. P., Chambers, P. A., Sandland, G. J., Ghadouani, A., & Serediak, M. (2001). Long‐term effects of successive Ca(OH)2 and CaCO3 treatments on the water quality of two eutrophic hardwater lakes. Freshwater Biology, 46(8), 1089-1103. Pyo, D., & Shin, H. (2002). Extraction and analysis of microcystins RR and LR in cyanobacteria using a cyano cartridge. Journal of biochemical and biophysical methods, 51(2), 103-109. Qian, Y., Zhou, X., Zhang, Y., Zhang, W., & Chen, J. (2013). Performance and properties of nanoscale calcium peroxide for toluene removal. Chemosphere, 91(5), 717-723. doi: 10.1016/j.chemosphere.2013.01.049 Qin, B. (2013). A large-scale biological control experiment to improve water quality in eutrophic Lake Taihu, China. Lake and Reservoir Management, 29(1), 33-46. doi: 10.1080/10402381.2013.767867 Rai, M., Yadav, A., & Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology advances, 27(1), 76-83. Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M., & Stanier, R. Y. (1979). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Journal of General microbiology, 111(1), 1-61. Rohrlack, T., Dittmann, E., Henning, M., Börner, T., & Kohl, J.-G. (1999). Role of microcystins in poisoning and food ingestion inhibition of Daphnia galeata caused by the cyanobacterium Microcystis aeruginosa. Applied and environmental microbiology, 65(2), 737-739. Rositano, J., Nicholson, B., & Pieronne, P. (1998). Destruction of cyanobacterial toxins by ozone. Ruttenberg, K. C. (1992). Development of a sequential extraction method for different forms of phosphorus in marine sediments. Limnology and Oceanography, 37(7), 1460-1482. Sarvala, J., Helminen, H., Saarikari, V., Salonen, S., & Vuorio, K. (1998). Relations between planktivorous fish abundance, zooplankton and phytoplankton in three lakes of differing productivity Eutrophication in Planktonic Ecosystems: Food Web Dynamics and Elemental Cycling (pp. 81-95): Springer. Schofield, T. (1995). Birmingham Frankley water treatment works redevelopment. Water science and technology, 31(3), 213-223. Scragg, A., & Bonnett, C. (2002). Inhibition of microalgal growth by silver nitrate. Biotechnology letters, 24(3), 169-172. Sengco, M., & Anderson, D. (2003). Controlling harmful algal blooms through clay flocculation. The Journal of eukaryotic microbiology, 51(2), 169-172. Sengco, M. R., Li, A., Tugend, K., Kulis, D., & Anderson, D. M. (2001). Removal of red-and brown-tide cells using clay flocculation. I. Laboratory culture experiments with Gymnodinium breve and Aureococcus anophagefferens. Marine ecology progress series, 210, 41-53. Silvestry-Rodriguez, N., Sicairos-Ruelas, E. E., Gerba, C. P., & Bright, K. R. (2007). Silver as a disinfectant Reviews of environmental contamination and toxicology (pp. 23-45): Springer. Song, W., Teshiba, T., Rein, K., & O''Shea, K. E. (2005). Ultrasonically induced degradation and detoxification of microcystin-LR (cyanobacterial toxin). Environmental science & technology, 39(16), 6300-6305. Sotirova, A., Spasova, D., Galabova, D., Karpenko, E., & Shulga, A. (2008). Rhamnolipid–biosurfactant permeabilizing effects on gram-positive and gram-negative bacterial strains. Current microbiology, 56(6), 639-644. Sun, X.-X., Choi, J.-K., & Kim, E.-K. (2004). A preliminary study on the mechanism of harmful algal bloom mitigation by use of sophorolipid treatment. Journal of Experimental Marine Biology and Ecology, 304(1), 35-49. Sunda, W. (1975). The relationship between cupric ion activity and the toxicity of copper to phytoplankton. Massachusetts Institute of Technology and Woods Hole Oceanographic Institution. Sunda, W. G., & Lewis, J. M. (1978). Effect of complexation by natural organic ligands on the toxicity of copper to a unicellular alga, Monochrysis lutheri. Limnology and Oceanography. Surono, I., Collado, M., Salminen, S., & Meriluoto, J. (2008). Effect of glucose and incubation temperature on metabolically active< i> Lactobacillus plantarum</i> from dadih in removing microcystin-LR. Food and chemical toxicology, 46(2), 502-507. Tieckelmann, R., & Steele, R. (1991). Higher-assay grade of calcium peroxide improves properties of dough. Food technology (USA). Tiwari, D. K., Behari, J., & Sen, P. (2008). Time and dose-dependent antimicrobial potential of Ag nanoparticles synthesized by top-down approach. Current Science, 95(5), 647-655. Tsuji, K., Watanuki, T., Kondo, F., Watanabe, M. F., Nakazawa, H., Suzuki, M., . . . Harada, K.-I. (1997). Stability of microcystins from cyanobacteria—IV. Effect of chlorination on decomposition. Toxicon, 35(7), 1033-1041. Van der Does, J., Verstraelen, P., Boers, P., Van Roestel, J., Roijackers, R., & Moser, G. (1992). Lake restoration with and without dredging of phosphorus-enriched upper sediment layers. Hydrobiologia, 233(1-3), 197-210. Vesper, S. J., Murdoch, L. C., Hayes, S., & Davis-Hoover, W. J. (1994). Solid oxygen source for bioremediation in subsurface soils. Journal of Hazardous Materials, 36(3), 265-274. Wang, L., Wang, C., Mao, Y., Du, E., & Xu, X. (2013). Eutrophic lake water treatment using a diatomite porous ceramic membrane. Desalination and Water Treatment, 1-7. doi: 10.1080/19443994.2013.846506 Wang, X., Gong, L., Liang, S., Han, X., Zhu, C., & Li, Y. (2005). Algicidal activity of rhamnolipid biosurfactants produced by Pseudomonas aeruginosa. Harmful Algae, 4(2), 433-443. Welch, I., Barrett, P., Gibson, M., & Ridge, I. (1990). Barley straw as an inhibitor of algal growth I: studies in the Chesterfield Canal. Journal of applied Phycology, 2(3), 231-239. Xiong, J., He, Z., Mahmood, Q., Liu, D., Yang, X., & Islam, E. (2008). Phosphate removal from solution using steel slag through magnetic separation. Journal of Hazardous Materials, 152(1), 211-215. Yan, H., Gong, A., He, H., Zhou, J., Wei, Y., & Lv, L. (2006). Adsorption of microcystins by carbon nanotubes. Chemosphere, 62(1), 142-148. Yoshida, T., Maki, M., Okamoto, H., & Hiroishi, S. (2005). Coordination of DNA replication and cell division in cyanobacteria Microcystis aeruginosa. FEMS microbiology letters, 251(1), 149-154. Yu, X., Zhou, J., Wang, Z., & Cai, W. (2010). Preparation of visible light-responsive AgBiO3 bactericide and its control effect on the Microcystis aeruginos. Journal of Photochemistry and Photobiology B: Biology, 101(3), 265-270. Zurawell, R. W., Chen, H., Burke, J. M., & Prepas, E. E. (2005). Hepatotoxic cyanobacteria: a review of the biological importance of microcystins in freshwater environments. Journal of Toxicology and Environmental Health, Part B, 8(1), 1-37. 王根樹.(2014). 台大開放式課程-Ch6 安全飲用水-傳統淨水程序 水利署. (2010). 台灣地區水資源利用現況與未來發展問題. 張書奇.(2013). 行政院國家科學委員會專題研究計畫申請書-以奈米生物操控結合總磷削減控制優養化水體中微囊藻藻華-以金門太湖為例 林財富. (2008). 藍綠藻的美麗與哀愁. 金門縣政府. (2011). 金門縣災害防救深耕計畫-細部執行計畫. 高瑋蓮. (2010). 水生植物與水耕蔬菜攝取氮磷速率之研究. 鄭銘日. (2006). 日月潭人工浮島設置之效益評估與可行性研究. 環保署. (2005). 以生態工法淨化水庫水質控制優養化研究計畫. 環保署. (2007). 以生物鏈淨化水庫水質試驗計畫. 環保署. (2007). 飲用水水源及水質中產毒藻種及藻類毒素之研究(第三年). 環保署. (2011). 行政院環保署民國 100 年環境水質監測年報. 環保署. (2012). 行政院環保署民國 101 年環境水質監測年報. 環保署. (2013). 行政院環保署民國 102 年環境水質監測年報. 蘇郁婷. (2006). 微囊藻毒素在淨水處理程序流佈之研究. 成功大學環境工程學系碩士論文. 楊書豪. (2012). 乳化液包覆過氧化物奈米顆粒進行地下水中三氯乙烯移除研究.中興大學環境工程學系碩士論文. 李承澔. (2012). 奈米矽片去除優養化水體中微囊藻可行性探討. 中興大學環境程學系碩士論文. 連珮妤. (2013). 乳化液與奈米過氧化鈣加強生物降解三氯乙烯之管柱試驗. 中興大學環境工程學系碩士論文. 歐陽橋輝. (2003). 下水道工程. 長松文化公司出版 http://totallycoolpix.com/2013/02/water-pollution-in-china/ (2014). 路透社網站. http://wq.epa.gov.tw/WQEPA/Code/?Languages= (2014). 行政院環保署 全國環境水質監測資訊網
摘要: 
我國因水文及地形的因素導致飲用水水源相當仰賴湖泊及水庫,近年來由於集水區的農牧業發展及人為活動增加,造成水庫中氮與磷濃度上升而形成優養化現象,尤以離島小型湖泊水庫最為嚴重。依環保署卡爾森指標(Carlson trophic stateindex)界定優養化情形可知,民國 102 年台灣離島水庫優養化比例高達 91.2 %以上,已知湖庫優養化衍生許多問題,其中以釋放微囊藻毒素之微囊藻最受矚目,微囊藻毒素對脊椎動物具有強烈肝毒性,會引起魚群暴斃或家畜死亡;目前的淨水程序上並無法有效去除微囊藻毒素,大幅增加飲用水的安全顧慮,故如何將微囊藻及其毒素在淨水程序前有效去除是非常重要的課題。全世界優養化情形大多好發於淺型湖泊,本研究目的在於利用奈米材料及生物操控技術解決淺型湖泊優養化,從水體中總磷控制、藻華去除以及直接改善水下光照三個分向來著手,其中以奈米過氧化鈣為材料去除水體中的微囊藻及藻毒,同時進行總磷的削減,並以導光設備刺激水下植物生長,達到降低微囊藻及藻毒危害之目的。

本研究自行製備之奈米過氧化鈣,純度可達 80%以上,顆粒大小可達 37.0±4.5nm,具有均一度佳、結晶形狀完整等優點。在微囊藻生長抑制實驗中,較低藻類細胞濃度下(1.45×106 cells/ml)使用低劑量的奈米過氧化鈣即能達到抑制效果,可知 CPNP 應用於優養化的水體之中可行性相當高,較佳之加藥時機為中低微囊藻密度,也就是微囊藻尚未大量繁殖之前,且加量應至少高於 10 ppm。於濁度去除實驗中,發現奈米過氧化鈣相較起傳統的混凝劑及奈米矽片(NSP)去除濁度的效果較差,故奈米過氧化鈣並不適合當成混凝劑使用。微囊藻毒素分解實驗中,以劑量 100 ppm 的奈米過氧化鈣去除微囊藻毒素 MC-LR 效果最好,實驗可以看出奈米過氧化鈣對於 MC-LR 的去除效果較去除 MC-RR 優異。整體而言,使用奈米過氧化鈣整治微囊藻可同時具有抑制其生長與其分解毒素的效果。單純在水相中除磷的實驗結果顯示加入低劑量的奈米過氧化鈣除磷效果不佳,應加量至 100 ppm較為保險。過氧化鈣添加進實際底泥湖水的批次實驗結果顯示奈米過氧化鈣的確有將水中總磷沉降至底泥中的效果,且劑量為 500 ppm 的奈米過氧化鈣使底泥總磷增加的幅度最大。在改善水下光照的實驗,光纖最佳照度測試結果可知,將光纖兩端均修飾可以讓光纖照度有明顯提升,而聚光罩的確對光纖的導光強度有再提升的能力,在 90 公分光纖下測出的平均照度為 371.4 lux。最後的管柱實驗中,發現有添加 100 ppm 之奈米過氧化鈣又有放光纖導光的管柱降低水中總磷的效果最明顯,也有效提升台灣水韭葉子部分的總磷濃度,顯示提升水下光纖照度並添加奈米過氧化鈣對於沉水植物生長有正面影響。

Lake eutrophication is an imperative environmental problem around the world. In recent years, algal bloom has become a serious threat to drinking water safety. Especially cyanobacteria in eutrophic water bodies produce not only odorous compounds but also lethal toxins. Microcystis aeruginosa is a common species of cyanobacteria which releases toxins named microcystin. In Taiwan, there are 35 major water reservoirs on isolated islands, in which 91.2 % of them have been identified as eutrophic. Methods of water treatment plant to removing Microcystis aeruginosa and microcystins include chemical methods and prechlorination in Taiwan. However, these methods easily result in harmful by-products, such as trihalogenated carbons. This study is aimed to reduce the impact of ertrophication by using nanomaterials for growth inhibition of Microcystis aeruginosa, decomposition of microcystin, and removal of phosphate in water, light guiding device to improve the light climate in the eutrophic water body, and growing submerged plants for removing nutrients in water, especially phosphorus.

The material used in this study is calcium peroxide nanoparticle (CPNP), and the particle size is as small as 37.0 ± 4.5 nm. In Microcystis aeruginosa growth inhibition test, dosage more than 10 ppm yielded good effects. The results showed that at 100 ppm and 500 ppn doses, the removal is 87.7 % and 93.0 % respectively. However, the efficacy of turbidity removal of CPNP is not significant. A toxin decomposition test showed that CPNP can remove microcystin-RR and microcystin-LR at as low as a 10 ppm dosage, and the effect on removing microcystin-LR is better than that on microcystin-RR. In phosphorus removal test, the calcium ion from CPNP dissociation precipitated with phosphorus in aqueous solution. The results showed that dosages of 100 ppm and 500 ppm have excellent removal efficiency. In the other hand, in the light climate improvement experiments, Taiwanese isoetes was chosen as submerged plant to conduct experiments with optical fiber assembled equipment. The results showed that adding 100 ppm CPNP and directing light to bottom water is effective to stimulate the growth of Taiwanese isoetes.
URI: http://hdl.handle.net/11455/91644
Rights: 不同意授權瀏覽/列印電子全文服務
Appears in Collections:環境工程學系所

Files in This Item:
File SizeFormat Existing users please Login
nchu-103-7101063039-1.pdf4.15 MBAdobe PDFThis file is only available in the university internal network   
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.