Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91656
標題: 以表面增強拉曼光譜進行十溴二苯醚之快速檢測
Rapid detection of BDE-209 by surface-enhanced Raman scattering
作者: Wei-Chieh Chen
陳威捷
關鍵字: 表面增強拉曼光譜;十溴二苯醚;底泥;快速檢測;微流體;Surface-enhanced Raman scattering;Polybrominated diphenyl ethers;Sediments;Rapid detection;Microfluidic
引用: 中文文獻 1. 丁望賢、鍾尹如(2005),固態基質中多溴聯苯醚萃取方法之新發展。CHEMISTRY (THE CHINESE CHEM. SOC., TAIPEI) 63(3), 343-352 2. 王玉瓏、劉艷新及彭子峰(2008),近紅外傅立葉變換拉曼光譜 (NIR—FTIR) 在造紙工業中的應用,第十五屆全國造紙化學品開發應用技術研討會論文集 3. 王淳剛(2007),多溴聯苯醚之光降解與生物降解研究,國立中興大學土壤環境科學系碩士學位論文 4. 行政院環保署(2012),持久性有機污染物斯德哥爾摩公約國家實施計畫2012年成果報告 5. 行政院環境保護署(2009),毒性化學物質環境流佈調查成果手冊。 6. 吳佳儀(2005),Development of Capillary Electrophoresis Chip with Electrochemical Detecting Histamine. 國立成功大學醫學工程研究所碩博士論文. 7. 吳雅華(2010),底泥有機質之含量與特殊組成對PBDEs吸持行為之影響,國立中央大學環境工程研究所碩士論文 8. 李立勇(2010),生物體内多溴聯苯醚的測定及分布研究,河北大學碩士學位論文 9. 阮泓翔(2007),表面增強拉曼光譜應用雙金屬奈米粒子偵測肌酸酐分子,陽明醫學大學碩士學位論文 10. 周瓊茹 (2006), 以電子束微影及反應性離子蝕刻製作深次微米圓柱陣列,國立中正大學物理研究所碩士論文 11. 邵超英、邵玉婉、張琢、溫曉華及何中發(2009),微波輔助萃取-氣相色譜測定紡織品中多溴聯苯(醚)類阻燃劑,分析化學(04),522-526 12. 洪瑞華(2012),微製造工程講義,中興大學精密所 13. 胡琪、趙進輝、袁海超、洪茜、肖海斌及劉木華 (2014)。基於表面增強拉曼光譜的甲萘威水溶液檢測分析。激光與光電子學進展,51(7),188-193 14. 張怡塘、林政君(2010),多溴聯苯醚(PBDE)之環境流佈及處理方法 15. 張磊、張玉蘭、張偉、王文明及杜一平 (2009),胸腺嘧啶在改進銀溶膠溶液中的表面增強拉曼散射光譜信號與濃度的定量關系,光譜學與光譜分析(7),1889-1891 16. 曹亮吉(2000),理科數學數值方法,國立編譯館 17. 陳長琦,幹蜀毅,朱武及王先路(2003)。環境掃描電子顯微鏡工作原理及實現,真空電子技術,第六期,29-32 18. 陳重羽(2005),台灣地區主要河川多溴聯苯醚污染分布研究,成功大學環境醫學研究所學位論文 19. 陳偉(2006),限制使用有毒有害物質(RoHS)認證,电聲技術(12),70-72 20. 楊永亮、潘静、李悦、殷效彩、石磊 (2004),青島近岸沉積物中持久性有機污染物多氯萘和多溴聯苯醚,科学通报,48(21),2244-2251 21. 楊忠諺、葉源益(2001),乾式蝕刻於矽微加工及微機電方面之應用,奈米通訊 8(4): 11-17 22. 楊喜男(2010),美國短期研習經驗談,行政院環境保護署環境檢驗所 23. 楊倧儒(2009),流式質體儀: 超快速高輸出質體學研究量化儀器開發-流體動態聚焦與細胞溶解,中興大學環境工程學系所學位論文 24. 楊凱淇(2009),國人食物中多溴二苯醚濃度與暴露之研究,國立陽明大學碩士學位論文 25. 劉藝凱、唐建輝、潘曉輝、田崇國及陳穎軍(2012)環境中多溴聯苯醚分析方法的研究進展 26. 蔡維鉦、陳冠橋、朱文綺、張海舟(2006)。高壓振動光譜在化學研究上的應用:以生物相關及新興材料分子為例,國立東華大學化學系 27. 鄭凱安、葉乃菁、殷正華、林海珍、劉建君及郭光輝(2005)。微流體生物晶片技術地圖及分析,財團法人國家實驗研究院科技政策研究與資訊中心 28. 環檢所(2002),索氏萃取法NIEA M165.00C 29. 環檢所(2002),礬土管柱淨化法NIEA M181.00C 30. 環檢所(2004),加壓流體萃取法NIEA M189.00C 31. 環檢所(2004),固相萃取方法NIEA M188.00C 32. 環檢所(2004),超臨界流體萃取法NIEA M192.00C 33. 環檢所(2008),自動索氏萃取法NIEA M193.00C 34. 環檢所(2014),土壤、底泥及事業廢棄物中半揮發性卅非揮發性有機物檢測樣品製備方法總則NIEA M151.02C 35. 謝秀燕(2013),流式質體儀:超高速之微生物鑑定定量研究─微水珠中雙螢光偵測研究,國立中興大學環境工程學系碩士學位論文 36. 簡竹瑩(2007),不同尺寸奈米銀顆粒的製備及顆粒大小對苯甲酸表面增強拉曼散射的影響,逢甲大學光電學系碩士學位論文 37. 顏懷宣(2012),流式質體儀:超高速之微生物鑑定定量研究-微水珠中螢光偵測方法研究,國立中興大學環境工程學系碩士論文 外文文獻 1. Alcock, R. E., Sweetman, A., & Jones, K. C.(1999). Assessment of organic contanhnant fate in waste water treatment plants I: Selected compounds and physicochemical properties. Chemosphere, 38(10), 2247-2262. 2. An, H. H., Kim, Y., Han, W. B., Kim, H.-S., Lee, S., Yi, S. C., & Yoon, C. S. (2013). Surface-enhanced Raman scattering substrate based on silver nanoparticle-deposited phospholipid multilayer. Applied Surface Science, 287, 369-374. 3. Bhagavantam, S. (1971). Chandrasekhar Venkata Raman. Biographical Memoirs of Fellows of the Royal Society, 17, 565-592. 4. Byun, I., Yang J. and Park S. (2008). Fabrication of a new micro bio chip and flow cell cytometry system using Bio-MEMS technology. Microelectronics Journal, 39, 717-722. 5. Calvosa, F. C., & Lagalante, A. F.(2010). Supercritical fluid extraction of polybrominated diphenyl ethers (PBDEs) from house dust with supercritical 1,1,1,2-tetrafluoroethane (R134a). Talanta, 80(3), 1116-1120. 6. Campion, A. K., Patanjali. (1998). Surface-enhanced Raman scattering. Chemical Society Reviews, 27, 241-244. 7. Cecchini, M. P., Hong, J., Lim, C., Choo, J., Albrecht, T., Demello, A. J., & Edel, J. B. (2011). Ultrafast surface enhanced resonance Raman scattering detection in droplet-based microfluidic systems. Anal Chem, 83(8), 3076-3081. 8. Chrimes, A. F., Khoshmanesh, K., Stoddart, P. R., Kayani, A. A., Mitchell, A., Daima, H., Kalantar-zadeh, K. (2012). Active Control of Silver Nanoparticles Spacing Using Dielectrophoresis for Surface-Enhanced Raman Scattering. Analytical Chemistry, 84(9), 4029-4035. 9. Chung, E., Gao, R., Ko, J., Choi, N., Lim, D. W., Lee, E. K., . . . Choo, J. (2013). Trace analysis of mercury(II) ions using aptamer-modified Au/Ag core-shell nanoparticles and SERS spectroscopy in a microdroplet channel. Lab Chip, 13(2), 260-266. 10. Creighton, J. A. E., Desmond G. (1991). Ultraviolet?visible absorption spectra of the colloidal metallic elements. Journal of the Chemical Society, 87, 3881. 11. Darnerud, P. O. (2008). Brominated flame retardants as possible endocrine disrupters. Int J Androl, 31(2), 152-160. 12. Darnerud, P. O., Eriksen, G. S., Johannesson, T., Larsen, P. B., & Viluksela, M. (2001). Polybrominated diphenyl ethers: occurrence, dietary exposure, and toxicology. Environ Health Perspect, 109 Suppl 1(Suppl 1), 49-68. 13. de Wit, C. A. (2002). An overview of brominated flame retardants in the environment. Chemosphere, 46(5), 583-624. 14. Delhaye, C., Bruneel, J.-L., Talaga, D., Guirardel, M., Lecomte, S., & Servant, L. (2012). Tailoring Surface-Enhanced Raman Scattering Effect Using Microfluidics. The Journal of Physical Chemistry C, 116(9), 5327-5332. 15. DODDER, N. G., STRANDBERG, B., & HITES, R. A. (2000). Concentrations and spatial variations of polybrominated diphenyl ethers in fish and air from the northeastern United States. Organohalogen compounds, 47, 69-72. 16. Environmental Agency of Japan(1996). Surveyed chemical substances and their detected levels in the environment (A cumulative list for Fiscal Year 1974-1998), Report on environmental survey and wildlife monitoring of chemicals (FY 1996). 17. Fan, M., Wang, P., Escobedo, C., Sinton, D., & Brolo, A. G. (2012). Surface-enhanced Raman scattering (SERS) optrodes for multiplexed on-chip sensing of nile blue A and oxazine 720. Lab Chip, 12(8), 1554-1560. 18. Fleischmann, M., Hendra, P. J., & Mcquilla.Aj. (1974). Raman-Spectra of Pyridine Adsorbed at a Silver Electrode. Chemical Physics Letters, 26(2), 163-166. 19. Freeman, R. G., Grabar, K. C., Allison, K. J., Bright, R. M., Davis, J. A., Guthrie, A. P., Natan, M. J.(1995). Self-Assembled Metal Colloid Monolayers: An Approach to SERS Substrates. Science, 267(5204), 1629-1632. 20. Gao, R., Choi, N., Chang, S. I., Kang, S. H., Song, J. M., Cho, S. I., Choo, J. (2010). Highly sensitive trace analysis of paraquat using a surface-enhanced Raman scattering microdroplet sensor. Anal Chim Acta, 681(1-2), 87-91. 21. Gardiner, D., & Graves, P. (1989). Practical Raman spectroscopy. Springer-Verlag. 22. Geng, Z., Liu, W., Wang, X., & Yang, F. (2011). A route to apply Ag nanoparticle array integrated with microfluidic for surface enhanced Raman scattering. Sensors and Actuators A: Physical, 169(1), 37-42. 23. Gilbert, E. (2009). US EPA Contaminated Site Cleanup Information (CLU-IN). Journal of Contaminant Hydrology, 103(3-4), 119-133. 24. Hamers, T., Kamstra, J. H., Sonneveld, E., Murk, A. J., Visser, T. J., Van Velzen, M. J., Bergman, A. (2008). Biotransformation of brominated flame retardants into potentially endocrine-disrupting metabolites, with special attention to 2,2'',4,4''-tetrabromodiphenyl ether (BDE-47). Mol Nutr Food Res, 52(2), 284-298. 25. Hardy, M. L. (2002). The toxicology of the three commercial polybrominated diphenyl oxide (ether) flame retardants, Chemosphere, 46, 757-777. 26. Holler, F. J., Skoog, D., & Crouch, S. (2007). Principles of instrumental analysis. Belmont: Thomson. 27. Hsieh, M. K., Fu, C. T., Wu, S. C.(2011). Simultaneous estimation of glass-water distribution and PDMS-water partition coefficients of hydrophobic organic compounds using simple batch method. Environ Sci Technol, 45(18), 7785-7791 28. Isola, N. R., Stokes, D. L., & Vo-Dinh, T. (1998). Surface-enhanced Raman gene probe for HIV detection. Anal Chem, 70(7), 1352-1356. 29. Jeanmaire, D. L., & Van Duyne, R. P. (1977). Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 84(1), 1-20. 30. Jiang, X. H., Lai, Y. C., Wang, W., Jiang, W., & Zhan, J. H. (2013). Surface-enhanced Raman spectroscopy detection of polybrominated diphenylethers using a portable Raman spectrometer. Talanta, 116, 14-17. 31. Karthikeyan, B., & Loganathan, B. (2012). Strategic green synthesis and characterization of Au/Pt/Ag trimetallic nanocomposites. Materials Letters, 85, 53-56. 32. Kemmlein, S. (2000). Polybromierte Flammschutzmittel: Entwicklung eines Analyseverfahrens und Untersuchung und Bewertung der Belastungssituation ausgewahlter Umweltkompartimente: Mensch-und-Buch-Verlag. 33. Kim, K., Lee, H. B., & Shin, K. S. (2013). Surface-enhanced Raman scattering characteristics of nanogaps formed by a flat Ag substrate and spherical Pt nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc, 100, 10-14. 34. Kohler, J. M., Marz, A., Popp, J., Knauer, A., Kraus, I., Faerber, J., & Serra, C. (2013). Polyacrylamid/silver composite particles produced via microfluidic photopolymerization for single particle-based SERS microsensorics. Anal Chem, 85(1), 313-318. 35. Kudelski, A., Janik-Czachor, M., Bukowska, J., Dolata, M., & Szummer, A. (1999). Surface-enhanced Raman scattering (SERS) on copper electrodeposited under nonequilibrium conditions. Journal of molecular structure, 482, 245-248. 36. La Guardia, M. J., Hale, R. C., & Harvey, E. (2006). Detailed polybrominated diphenyl ether (PBDE) congener composition of the widely used penta-, octa-, and deca-PBDE technical flame-retardant mixtures. Environ Sci Technol, 40(20), 6247-6254. 37. Lai, Y., Pan, W., Ni, S., Zhang, D., & Zhan, J. (2011). Theoretical evaluation of the configurations and Raman spectra of 209 polychlorinated biphenyl congeners. Chemosphere, 85(3), 412-417. 38. Lin, S., Zhu, W., Jin, Y., & Crozier, K. B. (2013). Surface-enhanced Raman scattering with Ag nanoparticles optically trapped by a photonic crystal cavity. Nano Lett, 13(2), 559-563. 39. Lin, Y. C., Chang, S. J., Su, Y. K., Shei, S. C., & Hsu, S. J. (2003). Inductively coupled plasma etching of GaN using Cl2/He gases. Materials Science and Engineering: B, 98(1), 60-64. 40. Liu, Y., Zheng, G. J., Yu, H., Martin, M., Richardson, B. J., Lam, M. H., & Lam, P. K. (2005). Polybrominated diphenyl ethers (PBDEs) in sediments and mussel tissues from Hong Kong marine waters. Mar Pollut Bull, 50(11), 1173-1184. 41. Lombardi, J. R. B., Ronald L., Lu, Tianhong, Xu, Jia. (1986). Charge-transfer theory of surface enhanced Raman spectroscopy: Herzberg–Teller contributions. The Journal of Chemical Physics, 84, 4174. 42. Long, S., Li, L., Guo, H., Yang, W., & Lu, F. (2012). Preparation of stable core–shell dye adsorbent Ag-coated silica nanospheres as a highly active surfaced-enhanced Raman scattering substrate for detection of Rhodamine 6G. Dyes and Pigments, 95(3), 473-477. 43. Lu, Y., Ganguli, R., Drewien, C. A., Anderson, M. T., Brinker, C. J., Gong, W., Zink, J. I. (1997). Continuous formation of supported cubic and hexagonal mesoporous films by sol–gel dip-coating. Letters to Nature, 389(6649), 364-368. 44. Lucio G. Costa , G. G., Sara Tagliaferri, Andrea Caglieri, Antonio Mutti. (2008). Polybrominated diphenyl ether (PBDE) flame retardants environmental contamination, human body burden and potential adverse health effects. ACTA BIOMED, 79, 172-183. 45. Luo, X., Mai, B., Yang, Q., Fu, J., Sheng, G., & Wang, Z. (2004). Polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides in water columns from the Pearl River and the Macao harbor in the Pearl River Delta in South China. Mar Pollut Bull, 48(11-12), 1102-1115. 46. Madia, F., Giordano, G., Fattori, V., Vitalone, A., Branchi, I., Capone, F., & Costa, L. G. (2004). Differential in vitro neurotoxicity of the flame retardant PBDE-99 and of the PCB Aroclor 1254 in human astrocytoma cells. Toxicol Lett, 154(1-2), 11-21. 47. McBride, M. B. (1994). Environmental chemistry of soils: Oxford university press. 48. Mingwu, S., Chao, W., Yongjuan, J., Xinhua, D., & Xiang, F. (2010). Determination of selected polybrominated diphenylethers and polybrominated biphenyl in polymers by ultrasonic-assisted extraction and high-performance liquid chromatography-inductively coupled plasma mass spectrometry. Anal Chem, 82(12), 5154-5159. 49. Moskovits, M. (2006). Surface-Enhanced Raman Spectroscopy: a Brief Perspective. In Surface-Enhanced Raman Scattering – Physics and Applications, 1-18. 50. Muniz-Miranda, M. (2014). SERS monitoring of the catalytic reduction of 4-nitrophenol on Ag-doped titania nanoparticles. Applied Catalysis B: Environmental, 146, 147-150. 51. Organization, W. H. (1996). Environmental health criteria 181-Chlorinated paraffins. WHO, Geneva, Switzerland. 52. Parisi, J., Su, L., & Lei, Y. (2013). In situ synthesis of silver nanoparticle decorated vertical nanowalls in a microfluidic device for ultrasensitive in-channel SERS sensing. Lab Chip, 13(8), 1501-1508. 53. Pinheiro, P. C., Fateixa, S., Nogueira, H. I., & Trindade, T. (2013). SERS study on adenine using a Ag/poly(t-butylacrylate) nanocomposite. Spectrochim Acta A Mol Biomol Spectrosc, 101, 36-39. 54. Salgado-Petinal, C., Llompart, M., Garcia-Jares, C., Garcia-Chao, M., & Cela, R. (2006). Simple approach for the determination of brominated flame retardants in environmental solid samples based on solvent extraction and solid-phase microextraction followed by gas chromatography–tandem mass spectrometry. Journal of Chromatography A, 1124(1), 139-147. 55. Shin, M., Svoboda, M. L., & Falletta, P. (2007). Microwave-assisted extraction (MAE) for the determination of polybrominated diphenylethers (PBDEs) in sewage sludge. Anal Bioanal Chem, 387(8), 2923-2929. 56. Smith, E. D., G. (2005). Modern Raman Spectroscopy: A Practical Approach. John Wiley and Sons, United Kingdom 57. Socrates, G. (2004). Infrared and Raman characteristic group frequencies: tables and charts: John Wiley & Sons, United Kingdom 58. Strommen, D. P. (1992). Specific Values of the Depolarization Ratio in Raman-Spectroscopy - Their Origins and Significance. Journal of chemical education, 69(10), 803-807. 59. Sun, Z., Du, J., Yan, L., & Jing, C. (2014). Rapid detection of 2, 2′, 4, 4′‐tetrabromodiphenyl ether (BDE‐47) using a portable Au‐colloid SERS sensor. Journal of Raman Spectroscopy, 45(9), 745-749. 60. Syme, C. D., Martino, C., Yusvana, R., Sirimuthu, N. M., & Cooper, J. M. (2012). Quantitative characterization of individual microdroplets using surface-enhanced resonance Raman scattering spectroscopy. Anal Chem, 84(3), 1491-1495. 61. Talian, I., & Huebner, J. (2013). Separation followed by direct SERS detection of explosives on a novel black silicon multifunctional nanostructured surface prepared in a microfluidic channel. Journal of Raman Spectroscopy, 44(4), 536-539. 62. Tobin, M. C. (1968). Raman spectra of crystalline lysozyme, pepsin, and alpha chymotrypsin. Science, 161(3836), 68-69. 63. Vonderheide, A. P., Mueller-Spitz, S. R., Meija, J., Welsh, G. L., Mueller, K. E., Kinkle, B. K., Caruso, J. A. (2006). Rapid breakdown of brominated flame retardants by soil microorganisms. Journal of Analytical Atomic Spectrometry, 21(11), 1232-1239. 64. Watanabe, I., & Tatsukawa, R. (1990). Anthropogenic brominated aromatics in the Japanese environment: swedish national chemicals inspectorate: Proceedings of the workshop on brominated aromatic flame retardants. Sweden: Solna. 65. Watanabe, I., Kashimoto, T., & Tatsukawa, R. (1987). Polybrominated biphenyl ethers in marine fish, shellfish and river and marine sediments in Japan. Chemosphere, 16(10), 2389-2396. 66. Xu, P., Jeon, S. H., Mack, N. H., Doorn, S. K., Williams, D. J., Han, X. J., & Wang, H. L. (2010). Field-assisted synthesis of SERS-active silver nanoparticles using conducting polymers. Nanoscale, 2(8),1436-1440. 67. Yang, P.-T. (2005). Microfluid driving control for loop type polymerase chain reaction micro chip. Mechanical Engineering, Master 68. Zhang, M., Cao, Z., & Yobas, L. (2013). Microchannel plate (MCP) functionalized with Ag nanorods as a high-porosity stable SERS-active membrane. Sensors and Actuators B: Chemical, 184, 235-242. 69. Zhao, W., Xu, Z., Sun, T., Liu, S., Wu, X., Ma, Z., Chen, C. (2014). Carbon cloth surface-decorated with silver nanoparticles for surface-enhanced Raman scattering. Journal of Alloys and Compounds, 584, 635-639. 70. Zhou, Q., Yang, Y., Ni, J., Li, Z., & Zhang, Z. (2010). Rapid detection of 2, 3, 3’, 4,4’-pentachlorinated biphenyls by silver nanorods-enhanced Raman spectroscopy. Physica E: Low-dimensional Systems and Nanostructures, 42(5), 1717-1720. 71. Zhou, T., Taylor, M. M., DeVito, M. J., & Crofton, K. M. (2002). Developmental exposure to brominated diphenyl ethers results in thyroid hormone disruption. Toxicol Sci, 66(1), 105-116.
摘要: 
多溴二苯醚(polybrominated diphenyl ethers, PBDEs) 是一系列含溴原子的聯苯醚化合物,共有209種同源物,工業上常做為阻燃劑。PBDEs進入環境後,由於脂溶性強,且不易分解,可干擾生物體甲狀腺內分泌,對人類的威脅日益升高。PBDEs中又以十溴二苯醚 (BDE-209) 用量最大且可能成為環境之PBDEs中最大宗污染物,也是其他PBDEs之主要源頭,佔總PBDEs之85%~95%;而目前檢測BDE-209處理程序,須經長時間萃取及繁複的淨化程序,耗費時間、成本與人力。本研究利用表面增強拉曼散射研發更快速且靈敏性高的偵測方法,可大幅改善目前之檢測方法。
拉曼散射光譜是用來研究分子振動模式的技術,但其強度非常微弱,無法應用於微量物質偵測。直到有學者將待測分子置於銀的表面,得到增強數個數量級的拉曼散射光譜訊號,成為表面增強拉曼散射 (Surface-enhanced Raman scattering, SERS) 用於化學檢測分析的濫觴。本研究探討以SERS技術快速偵測BDE-209之可行性,目前以微流體晶片方式實驗室配製之BDE-209樣品,其檢量線之R2大於0.98;以SERS檢測環境樣品萃取液中BDE-209(n=3)並以細針型SERS基材來增強訊號時,與各樣品之氣相層析儀測值進行相關性比較,發現當使用PMMA為材料時,其決定R2值可達0.8以上。分析大量之樣品,細針型SERS基材的製備時間加上進行拉曼訊號偵測的時間比傳統方法所需時間,可縮短90%以上的時間。此研究證實SERS可用於快速檢測底泥中多溴二苯醚之可能性,基於本研究成果,SERS應該可以應用於環境介質中微量疏水性污染物之快速檢測。

polybrominated diphenyl ethers(PBDE)sare diphenylethers with one to ten bromine atoms. With different numbers and positions of the bromine atoms on the benzene rings, they formed 209 different congeners. For industrial applications, they are usually physically added into products as flame retardants. After being released into the environment, they can easily enter human bodies through food chain and affect thyroid endocrine. PBDEs are not very soluble in water and are difficult to degrade, and, thus, pose serious threat to human health. Among them, decabrominated diphenyl ether(BDE-209)accounts for the largest share, about 85-95% of total PBDEs. Under anaerobic conditions, BDE-209 could be a source for other lower brominated diphenyl ethers through biodegradation. Currently, for the detection of BDE-209, one has to go through complicated extraction and cleanup procedures. Therefore, we propose to apply surface-enhanced Raman scattering(SERS)to facilitate rapid detection of BDE-209. Raman spectroscopy was used to study molecular vibration modes, but its intensity is too weak to be used in detecting trace chemicals. Later, some researchers deposit the sample on the surface of silver and Raman scattering signals were enhanced for several orders of magnitude. This is the beginning of SERS. In this research, we study the feasibility of application of SERS to the rapid detection of BDE-209. For SERS detection of pure BDE-209 in solvents using microfluidic chips, the coefficient of determination, R2, is as high as 0.9826. When comparing signal intensity and values obtained from SERS and gas chromatographic detection of the extracted BDE-209, respectively, the R2 could be higher than 0.800. SERS detection can save more than 90% of assay time. These results lend the support to the feasibility of application of SERS to rapid detection of PBDEs in sediments. Moreover, these results also suggest that SERS could be a good candidate for rapid detection of hydrophobic organic compounds in environmental matrices.
URI: http://hdl.handle.net/11455/91656
Rights: 不同意授權瀏覽/列印電子全文服務
Appears in Collections:環境工程學系所

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-104-7101063028-1.pdf4.58 MBAdobe PDFThis file is only available in the university internal network   
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.