Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91660
標題: 以非毒性溶劑製程製備 PDMS 薄膜應用於氣體分離之研究
Preparation and characterization of PDMS membrane by non-toxic solvent method for gas separation
作者: Chao-Fong Wu
吳肇峰
關鍵字: 非毒性溶劑;氣體分離;H2/CO2;CO2/N2;PDMS 薄膜;non-toxic solvent;gas separation;H2/CO2;CO2/N2;PDMS membrane
引用: [1] 我國燃料燃燒 CO2 排放統計與分析, in: 經濟部能源局 (Ed.), 2011. [2] 永續能源政策綱領, in: 經濟部能源局 (Ed.), 2008. [3] W. Dong, Principle of gas barrier separation and its research progress in sour gas purification, Journal of Chemical Industry & Engineering, 29 (2008). [4] P. Pandey, R.S. Chauhan, Membranes for gas separation, Progress in Polymer Science, 26 (2001) 853-893. [5] A.F. Ismail, N. Ridzuan, S.A. Rahman, Latest development on the membrane formation for gas separation, Membrane Science and Technology, 24 (2002) 1026-1043. [6] 彭福兵, 劉家祺, 氣體分離膜材料研究進展, Chemical Industry and Engineering progress, 21 (2002) 820-823. [7] 李吉祥, 蔡金英, 鄭旭軒, 許順珠, 楊奉儒, 綠色化學技術於工研院研 發現況, in: 工業技術研究院 (Ed.), 2007. [8] P.T. Anastas, J.C. Warner, Green chemistry: Theory and Practice, in: Oxford University Press (Ed.), 1998. [9] U.S.E.P. Agency, Risk Management Sustainable Technology, in: United States Environmental Protection Agency (Ed.), 2013. [10] R. Dua, S. Shrivastava, S.L. Shrivastava, S.K. Srivastava, Green Chemistry and Environmentally Friendly Technologies: A Review, Middle-East Journal of Scientific Research, 7 (2012) 846-855. [11] P.E. Miguel Mendez, The role of chemical engineers in green engineering, in: Chemical Engineering (Ed.), 2007. [12] Rosane Angelica Ligabue, Sandra Einloft,Jefferson Braga da Silva, Tassiani Poltronieri,Jeane Estela de Lima Dullius, Christian Viezzer, Denise Cantarelli, Vanusca Dalosto Janho, Process for producing biopolymer membranes and biopolymer membranes produced by this process, in: Google Patents (Ed.), 2012. [13] P. Wu, M. Imai, Novel biopolymer composite membrane involved with selective mass transfer and excellent water permeability, 2012. [14] L.J. Lozano, C. Godínez, A.P. de los Rí F.J. Hernández-Fernández, S.os, Sánchez-Segado, F.J. Alguacil, Recent advances in supported ionic liquid membrane technology, Journal of Membrane Science, 376 (2011) 1-14. [15] Q. Gan, D. Rooney, M. Xue, G. Thompson, Y. Zou, An experimental study of gas transport and separation properties of ionic liquids supported on nanofiltration membranes, Journal of Membrane Science, 280 (2006)948-956. [16] P. Scovazzo, D. Havard, M. McShea, S. Mixon, D. Morgan, Long-term, continuous mixed-gas dry fed CO2/CH4 and CO2/N2 separation performance and selectivities for room temperature ionic liquid membranes, Journal of Membrane Science, 327 (2009) 41-48. [17] P. Izák, M. Köckerling, U. Kragl, Solute transport from aqueous mixture throught supported ionic liquid membrane by pervaporation, Desalination, 199 (2006) 96-98. [18] P. Izák, W. Ruth, Z. Fei, P.J. Dyson, U. Kragl, Selective removal of acetone and butan-1-ol from water with supported ionic liquid–polydimethylsiloxane membrane by pervaporation, Chemical Engineering Journal, 139 (2008) 318-321. [19] B. Liu, C. Chen, W. Zhang, J. Crittenden, Y. Chen, Low-cost antifouling PVC ultrafiltration membrane fabrication with Pluronic F 127: Effect of additives on properties and performance, Desalination, 307 (2012) 26-33. [20] C. Zhang, X. Zhang, J. Dai, C. Bai, Synthesis and properties of PDMS modified waterborne polyurethane–acrylic hybrid emulsion by solvent-free method, Progress in Organic Coatings, 63 (2008) 238-244. [21] A. Alentiev, I.G. Economou, E. Finkelshtein, J. Petrou, V.E. Raptis, M. Sanopoulou, S. Soloviev, N. Ushakov, Y. Yampolskii, Transport properties of silmethylene homo-polymers and random copolymers: experimental measurements and molecular simulation, Polymer, 45 (2004) 6933-6944. [22] M. Soares da Silva, R. Viveiros, M.B. Coelho, A. Aguiar-Ricardo, T. Casimiro, Supercritical CO2-assisted preparation of a PMMA composite membrane for bisphenol A recognition in aqueous environment, Chemical Engineering Science, 68 (2012) 94-100. [23] L. Liu, J.-P. Yang, X.-J. Ju, R. Xie, L. Yang, B. Liang, L.-Y. Chu, Microfluidic preparation of monodisperse ethyl cellulose hollow microcapsules with non-toxic solvent, Journal of Colloid and Interface Science, 336 (2009) 100-106. [24] S. Narayan, J. Muldoon, M.G. Finn, V.V. Fokin, H.C. Kolb, K.B. Sharpless, “On Water”: Unique reactivity of organic compounds in aqueous suspension, Angewandte Chemie International Edition, 44 (2005) 3275-3279. [25] C.H. Loh, R. Wang, Fabrication of PVDF hollow fiber membranes: Effects of low-concentration Pluronic and spinning conditions, Journal of Membrane Science, 466 (2014) 130-141. [26] S. Li, F. Qin, P. Qin, M.N. Karim, T. Tan, Preparation of PDMS membrane using water as solvent for pervaporation separation of butanol-water mixture, Green Chemistry, 15 (2013) 2180-2190. [27] 劉 維 昕 , 氣 體 分 離 膜 綜 述 , in: Liaoning Chemical Industry (Ed.), (2002). [28] 林建中, 高分子材料性質應用, in: 高立圖書有限公司 (Ed.), 1998. [29] D.R. Paul, Y.P. Yampol''skii, Polymeric Gas Separation Membranes, CRCPress, 1993. [30] B.-G. Wang, Y. Miyazaki, T. Yamaguchi, S.-i. Nakao, Design of a vapor permeation membrane for VOC removal by the filling membrane concept, Journal of Membrane Science, 164 (2000) 25-35. [31] M. Mulder, Basic Principles of Membrane Technology, Kluwer Academic Publishers, 1996. [32] F. Hamad, K.C. Khulbe, T. Matsuura, Comparison of gas separation performance and morphology of homogeneous and composite PPO membranes, Journal of Membrane Science, 256 (2005) 29-37. [33] L. Shao, B.T. Low, T.-S. Chung, A.R. Greenberg, Polymeric membranes for the hydrogen economy: Contemporary approaches and prospects for the future, Journal of Membrane Science, 327 (2009) 18-31. [34] M.B. HÄ Gg, J.A. Lie, A. LindbrÅ Then, Carbon Molecular Sieve Membranes, Annals of the New York Academy of Sciences, 984 (2003) 329-345. [35] P.S. Rao, M.-Y. Wey, H.-H. Tseng, I.A. Kumar, T.-H. Weng, A comparison of carbon/nanotube molecular sieve membranes with polymer blend carbon molecular sieve membranes for the gas permeation application, Microporous and Mesoporous Materials, 113 (2008) 499-510. [36] H.-H. Tseng, I.A. Kumar, T.-H. Weng, C.-Y. Lu, M.-Y. Wey, Preparation and characterization of carbon molecular sieve membranes for gas separation—the effect of incorporated multi-wall carbon nanotubes, Desalination, 240 (2009) 40-45. [37] S. Domínguez-Domínguez, A. Berenguer-Murcia, E. Morallón, A. Linares-Solano, D. Cazorla-Amorós, Zeolite LTA/carbon membranes for air separation, Microporous and Mesoporous Materials, 115 (2008) 51-60. [38] X. Yin, J. Wang, N. Chu, J. Yang, J. Lu, Y. Zhang, D. Yin, Zeolite L/carbon nanocomposite membranes on the porous alumina tubes and their gas separation properties, Journal of Membrane Science, 348 (2010) 181-189. [39] C. Zeng, L. Zhang, X. Cheng, H. Wang, N. Xu, Preparation and gas permeation of nano-sized zeolite NaA-filled carbon membranes, Separation and Purification Technology, 63 (2008) 628-633. [40] S.H. Han, G.W. Kim, C.H. Jung, Y.M. Lee, Control of pore characteristics in carbon molecular sieve membranes (CMSM) using organic/inorganic hybrid materials, Desalination, 233 (2008) 88-95. [41] J. Gilron, A. Soffer, Knudsen diffusion in microporous carbon membranes with molecular sieving character, Journal of Membrane Science, 209 (2002) 339-352. [42] G.Q. Lu, J.C. Diniz da Costa, M. Duke, S. Giessler, R. Socolow, R.H. Williams, T. Kreutz, Inorganic membranes for hydrogen production and purification: A critical review and perspective, Journal of Colloid and Interface Science, 314 (2007) 589-603. [43] M.B. Hagg, J.A. Lie, A. Lindbrathen, Carbon molecular sieve membranes - A promising alternative for selected industrial applications, Annals of the New York Academy of Sciences, 984 (2003) 329-345. [44] M. Takht Ravanchi, T. Kaghazchi, A. Kargari, Application of membrane separation processes in petrochemical industry: a review, Desalination, 235 (2009) 199-244. [45] S.W. Rutherford, D.D. Do, Review of time lag permeation technique as a method for characterisation of porous media and membranes, Adsorption, 3 (1997) 283-312. [46] A.F. Ismail, A.R. Hassan, Formation and characterization of asymmetric nanofiltration membrane: Effect of shear rate and polymer concentration, Journal of Membrane Science, 270 (2006) 57-72. [47] C.H. Lau, P. Li, F. Li, T.-S. Chung, D.R. Paul, Reverse-selective polymeric membranes for gas separations, Progress in Polymer Science, 38 (2013) 740-766. [48] A.W. Thornton, T. Hilder, A.J. Hill, J.M. Hill, Predicting gas diffusion regime within pores of different size, shape and composition, Journal of Membrane Science, 336 (2009) 101-108. [49] P. Kofinas, R.E. Cohen, A.F. Halasa, Gas permeability of polyethylene/poly(ethylene-propylene) semicrystalline diblock copolymers, Polymer, 35 (1994) 1229-1235. [50] M.-H. Tsai, S.-L. Huang, S.-J. Liu, C.-J. Chen, P.-J. Chen, S.-H. Chen, Synthesis and properties of poly(urethane-imide) interpenetrating network membranes, Desalination, 233 (2008) 191-200. [51] 楊逸帆, 土壤有機質芳香性對非離子有機化合物分佈行為之影響, in:環境工程研究所, 國立中央大學 (Ed.), 2003. [52] Z.P. Smith, D.F. Sanders, C.P. Ribeiro, R. Guo, B.D. Freeman, D.R. Paul, J.E. McGrath, S. Swinnea, Gas sorption and characterization of thermally rearranged polyimides based on 3,3′-dihydroxy-4,4′-diamino-biphenyl (HAB) and 2,2′-bis-(3,4-dicarboxyphenyl) hexafluoropropane dianhydride(6FDA), Journal of Membrane Science, 415–416 (2012) 558-567. [53] G. Choudalakis, A.D. Gotsis, Free volume and mass transport in polymer nanocomposites, Current Opinion in Colloid & Interface Science, 17 (2012) 132-140. [54] An overview of polydimethylsiloxane (PDMS) fluids in the environment, in: Dow Corning (Ed.), 2009. [55] A.C.M. Kuo, Polymer data handbook, in: Oxford University Press, Inc. (Ed.), 1999. [56] M. Sadrzadeh, K. Shahidi, T. Mohammadi, Synthesis and gas permeation properties of a single layer PDMS membrane, Journal of Applied PolymerScience, 117 (2010) 33-48. [57] S.A. Stern, V.M. Shah, B.J. Hardy, Structure-permeability relationships in silicone polymers, Journal of Polymer Science Part B: Polymer Physics, 25 (1987) 1263-1298. [58] F. Xiangli, W. Wei, Y. Chen, W. Jin, N. Xu, Optimization of preparation conditions for polydimethylsiloxane (PDMS)/ceramic composite pervaporation membranes using response surface methodology, Journal of Membrane Science, 311 (2008) 23-33. [59] W. Wei, S. Xia, G. Liu, X. Gu, W. Jin, N. Xu, Interfacial adhesion between polymer separation layer and ceramic support for composite membrane, AIChE Journal, 56 (2010) 1584-1592. [60] P. Li, H.Z. Chen, T.-S. Chung, The effects of substrate characteristics and pre-wetting agents on PAN–PDMS composite hollow fiber membranes for CO2/N2 and O2/N2 separation, Journal of Membrane Science, 434 (2013) 18-25. [61] Y. Bai, L. Dong, C. Zhang, J. Gua, Y. Sun, L. Zhang, H. Chen, ZIF-8 filled polydimethylsiloxane membranes for pervaporative separation of n-Butanol from aqueous solution, Separation Science and Technology, 48 (2013) 2531-2539. [62] K.P. Ramaiah, D. Satyasri, S. Sridhar, A. Krishnaiah, Removal of hazardous chlorinated VOCs from aqueous solutions using novel ZSM-5 loaded PDMS/PVDF composite membrane consisting of three hydrophobic layers, J Hazard Mater, 261 (2013) 362-371. [63] K.P. Ramaiah, D. Satyasri, S. Sridhar, A. Krishnaiah, Removal of hazardous chlorinated VOCs from aqueous solutions using novel ZSM-5 loaded PDMS/PVDF composite membrane consisting of three hydrophobic layers, Journal of Hazardous Materials, 261 (2013) 362-371. [64] M. Nour, K. Berean, S. Balendhran, J.Z. Ou, J. Du Plessis, C. McSweeney, M. Bhaskaran, S. Sriram, K. Kalantar-zadeh, CNT/PDMS composite membranes for H2 and CH4 gas separation, International Journal of Hydrogen Energy, 38 (2013) 10494-10501. [65] G.L. Jadav, V.K. Aswal, P.S. Singh, Preparation of bifunctional poly (dimethylsiloxane) membrane by dual X-linking, Journal of Materials Chemistry A, 1 (2013) 4893-4903. [66] A. Kargari, A. Arabi Shamsabadi, M. Bahrami Babaheidari, Influence of coating conditions on the H2 separation performance from H2/CH4 gas mixtures by the PDMS/PEI composite membrane, International Journal of Hydrogen Energy, 39 (2014) 6588-6597. [67] K. Fateh-Alavi, The effect of stabilizers on the discharge-induced oxidation of crosslinked polydimethylsiloxane, in: Universitetsservice US AB, Stockholm, Sweden (Ed.), 2004. [68] C. Chen, J. Wang, Z. Chen, Surface restructuring behavior of various types of poly(dimethylsiloxane) in water detected by SFG, Langmuir, 20 (2004) 10186-10193. [69] W. Wan Ibrahim, W. Wan Ismail, A. Abdul Keyon, M. Sanagi, Preparation and characterization of a new sol–gel hybrid based tetraethoxysilane-polydimethylsiloxane as a stir bar extraction sorbent materials, Journal of Sol-Gel Science and Technology, 58 (2011) 602-611. [70] 謝振威, 劉家祺, 唐娜, PDMS/PS 中空纖維複合膜分離氫氣的性能研究, 天然氣化工, 29 (2004) 23-27. [71] 顧瑾, 鄧利容, 白雲翔, 張林, 陳歡林, V TES 交聯 PDMS 滲透汽化膜 分離水中乙醇性能的研究, 膜科學與技術, 30 (2010) 19-24. [72] K. Berean, J.Z. Ou, M. Nour, K. Latham, C. McSweeney, D. Paull, A. Halim, S. Kentish, C.M. Doherty, A.J. Hill, K. Kalantar-zadeh, The effect of crosslinking temperature on the permeability of PDMS membranes: Evidence of extraordinary CO2 and CH4 gas permeation, Separation and Purification Technology, 122 (2014) 96-104. [73] K.C. Khulbe, C.Y. Feng, T. Matsuura, Synthetic polymeric membranes: characterization by atomic force microscopy, in: Springer Laboratory (Ed.), 2008. [74] 莊國良, Preparation of PPO/Silica mixed matrix membrane through in-situ sol-gel method for H2 purification and CO2 capture, in: 環境工程學 系所, 中興大學 (Ed.), 2013. [75] F. Höök, B. Kasemo, T. Nylander, C. Fant, K. Sott, H. Elwing, Variations in coupled water, viscoelastic properties, and film thickness of a Mefp-1 protein film during adsorption and cross-linking:  A quartz crystal microbalance with dissipation monitoring, ellipsometry, and surface plasmon resonance study, Analytical Chemistry, 73 (2001) 5796-5804. [76] G.-D. Kim, D.-A. Lee, J.-W. Moon, J.-D. Kim, J.-A. Park, Synthesis and applications of TEOS/PDMS hybrid material by the sol–gel process, Applied Organometallic Chemistry, 13 (1999) 361-372. [77] H. Yoshino, K. Kamiya, H. Nasu, IR study on the structural evolution of sol-gel derived SiO2 gels in the early stage of conversion to glasses, Journal of Non-Crystalline Solids, 126 (1990) 68-78. [78] S. Yi, Y. Su, Y. Wan, Preparation and characterization of vinyltriethoxysilane (VTES) modified silicalite-1/PDMS hybrid pervaporation membrane and its application in ethanol separation from dilute aqueous solution, Journal of Membrane Science, 360 (2010) 341-351. [79] T. Seo, T. Yoshino, Y. Cho, N. Hata, T. Kikkawa, Electrical Characteristics of Mesoporous Pure-Silica–Zeolite Film, Japanese Journal of Applied Physics, 46 (2007) 5742. [80] R. Vera-Graziano, F. Hernandez-Sanchez, J.V. Cauich-Rodriguez, Study of crosslinking density in polydimethylsiloxane networks by DSC, Journal of Applied Polymer Science, 55 (1995) 1317-1327. [81] 陳曦, 王耀, 江雷, CO2 選擇性透過膜材料的製備, 高等學校化學學報, 34 (2013) 249-268. [82] L. Téllez, J. Rubio, F. Rubio, E. Morales, J.L. Oteo, Synthesis of inorganic-organic hybrid materials from TEOS, TBT and PDMS, Journal of Materials Science, 38 (2003) 1773-1780. [83] 趙旭紅, 劉公平, 衛旺, 劉賽男, 金萬勤, 聚合物溶液黏度對 PDMS卅 PVDF 複合膜微結構及滲透汽化性能的影響, 南京工業大學學報(自然科學版), 35 (2013) 9-12. [84] Z. Li, W. Han, D. Kozodaev, J.C.M. Brokken-Zijp, G. de With, P.C. Thüne,Surfacepropertiesofpoly(dimethylsiloxane)-based inorganic/organic hybrid materials, Polymer, 47 (2006) 1150-1158. [85] H.-X. Rao, F.-N. Liu, Z.-Y. Zhang, Preparation and oxygen/nitrogen permeabilityofPDMScrosslinkedmembraneand PDMS/tetraethoxysilicone hybrid membrane, Journal of Membrane Science, 303 (2007) 132-139. [86] R.W. Schofield, A.G. Fane, C.J.D. Fell, Gas and vapour transport through microporous membranes. I. Knudsen-Poiseuille transition, Journal of Membrane Science, 53 (1990) 159-171. [87] T.C. Merkel, V.I. Bondar, K. Nagai, B.D. Freeman, I. Pinnau, Gas sorption, diffusion, and permeation in poly(dimethylsiloxane), Journal of Polymer Science Part B: Polymer Physics, 38 (2000) 415-434. [88] M. Sadrzadeh, E. Saljoughi, K. Shahidi, T. Mohammadi, Preparation and characterization of a composite PDMS membrane on CA support, Polymers for Advanced Technologies, 21 (2010) 568-577. [89] C.J. Orme, F.F. Stewart, Separation of dimethyl ether from syn-gas components by poly(dimethylsiloxane) and poly(4-methyl-1-pentene) membranes, Chemical Engineering Journal, 170 (2011) 178-183. [90] S. Liu, G. Liu, W. Wei, F. Xiangli, W. Jin, Ceramic supported PDMS and PEGDA composite membranes for CO2 separation, Chinese Journal of Chemical Engineering, 21 (2013) 348-356. [91] I.P.u. A. Bos, H. Strathmann, M. Wessling, Suppression of gas separation membrane plasticization by homogeneous polymer blending, AIChE Journal, 47 (2001) 1088-1093. [92] S. Scarlata, The effect of hydrostatic pressure on membrane-bound proteins, Brazilian Journal of Medical and Biological Research, 38 (2005) 1203-1208. [93] F. Wu, L. Li, Z. Xu, S. Tan, Z. Zhang, Transport study of pure and mixed gases through PDMS membrane, Chemical Engineering Journal, 117 (2006) 51-59. [94] C.A. Scholes, G.W. Stevens, S.E. Kentish, The effect of hydrogen sulfide, carbon monoxide and water on the performance of a PDMS membrane in carbon dioxide/nitrogen separation, Journal of Membrane Science, 350 (2010) 189-199.
摘要: 
本研究希望能夠透過非毒性溶劑的方式來進行 Polydimethylsiloxane (PDMS,聚矽氧烷高分子)薄膜的製備,並且探討不同的交聯程序參數對於 薄膜的結構與交聯特性之影響,並評估 PDMS 薄膜的氣體滲透特性。因此 研究中會透過電子顯微鏡(FESEM)、原子力顯微鏡 (AFM)、黏滯度分析儀 (Viscometer)及傅立葉紅外線轉換光譜儀(FTIR),來進行 PDMS 薄膜之結構 特性和交聯特性的觀察,並以單一氣體滲透來探討薄膜的滲透特性。 研究結果顯示,確實可以透過含有 3.0 wt. % 4-Dodecylbenzenesulfonic acid (DBSA)水溶液當溶劑製備出有緻密型態的 PDMS 薄膜。同時透過黏滯 度比較 不同 交聯 劑 Tetraethyl orthosilicate (TEOS ,正 四乙 烯 基矽氧 烷 C8H20SiO4)添加量與交聯溫度之影響。發現 TEOS 添加量與交聯溫度確實 會影響到其交聯反應之速率。且發現在不同黏滯度下進行塗佈,會影響薄 膜的結構型態與氣體滲透特性。當黏滯度低時,形成較薄的 PDMS 層於基 材表面,對 H2/CO2 有較高的滲透與分選能力,當 TEOS 添加量為 9.4 wt. % 時 (PS9),可以看到 H2 的滲透通量可以到達 600 GPU 與 H2/CO2 分選率為 3.45;另外在黏滯度較高時,可以製備出較緻密的 PDMS 薄膜,其對於 CO2 有較高的滲透特性,當在 TEOS 添加量為 15.8 wt. %時 (PS15),CO2 的滲 透通量大約為 430 Barrers,CO2/H2 分選率大約 10。並且透過固化溫度的 提升,可以提升薄膜結構的穩定性,提升其耐塑化的特性。.

In recently, many researchers hope to find the green and clean chemistry processes to reduce environmental problem. This study focus on polydimethylsiloxane (PDMS) membrane which was fabricated through the non-toxic solvent method. Comparing with three solvents (n-Hexane, Deionized water and containing 3.0wt% 4-Dodecylbenzenesulfonic acid (DBSA)), the effect of crosslinking process was discussed by the viscosity property of casting solution. To study the correlation between the different preparation parameters and the structure and permeation properties of PDMS membrane. Therefore, we would use scanning electron microscope (FE-SEM), atomic force microscopy (AFM), viscosity analyzer and Fourier transform infrared spectroscopy (FTIR) in this study, to identify the morphology and cross-linking properties of PDMS membrane. The dense PDMS membrane was prepared successfully by 3.0 wt. % DBSA solvent. The results showed that the amounts of TEOS and crosslinking temperature would affect the rate of crosslinking reaction. Moreover, the viscosity of casting solution was also the important factor. When the viscosity of casting solution was low, the thin PDMS layer was permeated on the substrate surface, which had higher H2/CO2 selectivity. In contrast, the dense PDMS membrane was formed on substrate when the more viscous casting solution, which have the higher the permeability of CO2. On the other hand, the curing process of high temperature can enhance the stability of the membrane structure, and improve resistance-plasticizing in high pressure permeation.
URI: http://hdl.handle.net/11455/91660
Rights: 不同意授權瀏覽/列印電子全文服務
Appears in Collections:環境工程學系所

Files in This Item:
File SizeFormat
nchu-103-5101063006-1.pdf4.45 MBAdobe PDFView/Open
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.