Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91662
標題: 優養化湖泊環境監測-以金門太湖為例
Environmental monitoring for eutrophic Lake Tai-Hu in Kinmen County in Taiwan
作者: Yu-Hsiang Kuo
郭昱祥
關鍵字: 優養化;金門太湖;監測;藻毒;eutrophication;Tai-Hu resevoir;monitoring;algal toxin
引用: 經濟部水資源局,1997,水資源政策白皮書。 經濟部水資源局,1997,水庫清淤方法分析規範。 台灣環境資訊協會,2005,我們的島-拯救台灣。 金門縣民政處,2014,統計資訊。 國發會,2009,金馬中長期經濟發展規劃。 林財富,2008,藍綠菌的美麗與憂慮。 林郁靜,2008,以實驗方法探討人工濕地之水質淨化效益。 李炳團,2013,金門水質源現況及展望。 張書奇,2013,行政院國家科學委員會專題研究計畫申請書-以奈米生物操控結合總磷削減控制優養化水體中微囊藻藻華-以金門太湖為例。 郭振泰,2005,以生態工法淨化水庫水質控制優養化研究計畫。 駱尚廉、曾四恭、張尊國、楊萬發、吳先琪、林正芳、鄭克聲、范正成、郭振泰、吳俊宗,湖泊水庫水質改善及優養化評估法之建立和調查(四)-技術手冊,台灣大學環境工程學研究所執行,環保署委託,民國82 年6 月。 龔招健,2006,藻類繁殖-翡翠水庫水質惡化。 水利署,1998,台灣地區水資源開發綱領計畫。 水利署,2010,台灣地區水資源利用現況與未來發展問題。 營建署,2002,金門國家公園土壤調查分析及植生適應性研究。 環保署,2005,以生態工法淨化水庫水質控制優養化研究計畫。 環保署,2005,飲用水水源及水質中產毒藻種及藻類毒素之研究(第一年)。 環保署,2006,環境水質監測年報水庫水質篇。 環保署,2007,飲用水水源及水質中產毒藻類及藻類毒素之研究(第三年)。 環保署,2010,民國99年環境水質監測年報。 環保署,2011,民國100年環境水質監測年報。 環保署,2012,民國101年環境水質監測年報。 環保署,2013,民國102年環境水質監測年報。 向速林, 周文斌. (2010). 鄱陽湖沉積物中磷的赋存形態及分佈特徵. 湖泊科學, 22(5), 649-654. 朱廣偉, 秦伯強, 高光, 張路, 范成新. (2004). 長江中下游淺水湖泊沉積物中磷的形態及其與水相磷的關係. 環境科學學報, 24(3), 381-388. 楊敏. (2009). 湖泊底泥磷形態及pH 值對磷釋放影響研究. 郭海濤, 張盡忠, 魏世強, 謝德體, 車建成. (2011). 長壽湖沉積物中磷形態的季節變化特徵. 環境科學, 32(7), 1994-1999. 水利署(2015),台灣地區主要水庫蓄水量報告表http://fhy.wra.gov.tw/ReservoirPage_2011/StorageCapacity.aspx 環保署(2015),水質淨化現地處理網 http://wqp.epa.gov.tw/ecological/Default.aspx 氣象局(2015),氣候統計每月氣象資料 http://www.cwb.gov.tw/V7/ 環保署(2015),全國環境水質監測資訊網, http://wq.epa.gov.tw/Code/Default.aspx?Water=Dam Bellar, T. A., Lichtenberg, J. J., and Kroner, R. C. (1974). The occurrence of organohalides in chlorinated drinking waters. Journal (American Water Works Association), 703-706. Bláhová, L., Babica, P., Maršálková, E., Maršálek, B., and Bláha, L. (2007). Concentrations and seasonal trends of extracellular microcystins in freshwaters of the Czech Republic–results of the national monitoring program. CLEAN–Soil, Air, Water, 35(4), 348-354. Botes, D. P., Wessels, P. L., Kruger, H., Runnegar, M. T., Santikarn, S., Smith, R. J., . . . Williams, D. H. (1985). Structural studies on cyanoginosins-LR,-YR,-YA, and-YM, peptide toxins from Microcystis aeruginosa. Journal of the Chemical Society, Perkin Transactions 1, 2747-2748. Bowen, C., and Jensen, T. (1965). Blue-green algae: fine structure of the gas vacuoles. Science, 147(3664), 1460-1462. Briand, J.-F., Jacquet, S., Bernard, C., and Humbert, J.-F. (2003). Health hazards for terrestrial vertebrates from toxic cyanobacteria in surface water ecosystems. Veterinary Research, 34(4), 361-377. Brunson, M. W., Lutz, C. G., and Durborow, R. M. (1994). Algae blooms in commercial fish production ponds: Southern Regional Aquaculture Center. Carmichael, W., He, J.-w., Eschedor, J., He, Z.-r., and Juan, Y.-M. (1988). Partial structural determination of hepatotoxic peptides from Microcystis aeruginosa (cyanobacterium) collected in ponds of central China. Toxicon, 26(12), 1213-1217. Carmichael, W. W., Azevedo, S., An, J. S., Molica, R., Jochimsen, E. M., Lau, S., Eaglesham, G. K. (2001). Human fatalities from cyanobacteria: chemical and biological evidence for cyanotoxins. Environmental health perspectives, 109(7), 663. Carpenter, S. R. (1981). Submersed vegetation: an internal factor in lake ecosystem succession. American Naturalist, 372-383. Chorus, E. I., Bartram, J. (1999). Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. Chorus, I. (2001). Cyanotoxins: occurrence, causes, consequences: Springer Berlin. Codd, G. A., Lindsay, J., Young, F. M., Morrison, L. F., Metcalf, J. S. (2005). Harmful cyanobacteria Harmful cyanobacteria (pp. 1-23): Springer. Coleman, J. R., Colman, B. (1981). Inorganic carbon accumulation and photosynthesis in a blue-green alga as a function of external pH. Plant physiology, 67(5), 917-921. Colman, A. S. (2000). The global diagenetic flux of phosphorus from marine sediments to the oceans: redox sensitivity and the control of atmospheric oxygen levels. Cornish, B. J., Lawton, L. A., Robertson, P. K. (2000). Hydrogen peroxide enhanced photocatalytic oxidation of microcystin-LR using titanium dioxide. Applied Catalysis B: Environmental, 25(1), 59-67. Cotner, J. B., Wetzel, R. G. (1992). Uptake of dissolved inorganic and organic bphosphorus compounds by phytoplankton and bacterioplankton. Limnology and Oceanography, 37(2), 232-243. De Baar, H. (1994). von Liebig''s law of the minimum and plankton ecology (1899–1991). Progress in Oceanography, 33(4), 347-386. Dittmann, E., Börner, T. (2005). Genetic contributions to the risk assessment of microcystin in the environment. Toxicology and applied pharmacology, 203(3), 192-200. Haider, S., Naithani, V., Viswanathan, P., Kakkar, P. (2003). RETRACTED: cyanobacterial toxins: a growing environmental concern. Chemosphere, 52(1), 1-21. Havlin, J., Beaton, J. D., Tisdale, S. L., Nelson, W. L. (2005). Soil fertility and fertilizers: An introduction to nutrient management (Vol. 515): Pearson Prentice Hall Upper Saddle River, New Jersey, USA. Hedges, J. I. (1992). Global biogeochemical cycles: progress and problems. Marine chemistry, 39(1), 67-93. Himberg, K., Keijola, A.-M., Hiisvirta, L., Pyysalo, H., Sivonen, K. (1989). The effect of water treatment processes on the removal of hepatotoxins fromMicrocystis andOscillatoria cyanobacteria: A laboratory study. Water Research, 23(8), 979-984. Jewel, M., Affan, M., Khan, S. (2003). Fish mortality due to cyanobacterial bloom in an aquaculture pond in Bangladesh. Pak. J. Biol. Sci, 6(12), 1046-1050. Jones, G. J., Orr, P. T. (1994). Release and degradation of microcystin following algicide treatment of a Microcystis aeruginosa bloom in a recreational lake, as determined by HPLC and protein phosphatase inhibition assay. Water Research, 28(4), 871-876. Konno, H. (1993). Settling and coagulation of slender type diatoms. Water Science Technology, 27(11), 231-240. Krishnamurthy, T., Szafraniec, L., Hunt, D. F., Shabanowitz, J., Yates, J. R., Hauer, C. R., . . . Missler, S. (1989). Structural characterization of toxic cyclic peptides from blue-green algae by tandem mass spectrometry. Proceedings of the National Academy of Sciences, 86(3), 770-774. Kusumi, T., Ooi, T., Watanabe, M. M., Takahashi, H., Kakisawa, H. (1987). Cyanoviridin RR, a toxin from the cyanobacterium (blue-green alga) microcystisviridis. Tetrahedron letters, 28(40), 4695-4698. Lawton, L. A., Edwards, C. (2001). Purification of microcystins. Journal of chromatography A, 912(2), 191-209. Liu, I., Lawton, L. A., Robertson, P. K. (2003). Mechanistic studies of the photocatalytic oxidation of microcystin-LR: an investigation of byproducts of the decomposition process. Environmental science technology, 37(14), 3214-3219. Liu, Y., Chen, W., Li, D., Huang, Z., Shen, Y., Liu, Y. (2011). Cyanobacteria-/cyanotoxin-contaminations and eutrophication status before Wuxi drinking water crisis in Lake Taihu, China. Journal of Environmental Sciences, 23(4), 575-581. Luukkainen, R., Sivonen, K., Namikoshi, M., Färdig, M., Rinehart, K., Niemelä, S. (1993). Isolation and identification of eight microcystins from thirteen Oscillatoria agardhii strains and structure of a new microcystin. Applied and environmental microbiology, 59(7), 2204-2209. Maloney, T. E. (1963). Research on algal odor. Journal (American Water Works Association), 481-486. Mhlanga, L., Day, J., Cronberg, G., Chimbari, M., Siziba, N., Annadotter, H. (2006). Cyanobacteria and cyanotoxins in the source water from Lake Chivero, Harare, Zimbabwe, and the presence of cyanotoxins in drinking water. African Journal of Aquatic Science, 31(2), 165-173. Namikoshi, M., Rinehart, K. L., Sakai, R., Stotts, R. R., Dahlem, A. M., Beasley, V. R., . . . Evans, W. R. (1992). Identification of 12 hepatotoxins from a Homer Lake bloom of the cyanobacteria Microcystis aeruginosa, Microcystis viridis, and Microcystis wesenbergii: nine new microcystins. The Journal of Organic Chemistry, 57(3), 866-872. Painuly, P., Perez, R., Fukai, T., Shimizu, Y. (1988). The structure of a cyclic peptide toxin, cyanogenosin-RR from Microcystis aeruginosa. Tetrahedron letters, 29(1), 11-14. Palmer, C. M. (1964). Algae in water supplies of the United States: Springer. Persson, P.-E. (1983). Off-flavours in aquatic ecosystems—an introduction. Water Science and Technology, 15(6-7), 1-11. Peterjohn, W. T., Correll, D. L. (1984). Nutrient dynamics in an agricultural watershed: observations on the role of a riparian forest. Ecology, 65(5), 1466-1475. Pouria, S., de Andrade, A., Barbosa, J., Cavalcanti, R., Barreto, V., Ward, C., Codd, G. (1998). Fatal microcystin intoxication in haemodialysis unit in Caruaru, Brazil. The Lancet, 352(9121), 21-26. Redfield, A. C. (1934). On the proportions of organic derivatives in sea water and their relation to the composition of plankton: University Press of Liverpool. Reeburgh, W. S. (1997). Figures summarizing the global cycles of biogeochemically important elements. Bulletin of the Ecological Society of America, 260-267. Rengefors, K., Meyer, B. (1998). Peridinium euryceps sp. nov.(Peridiniales, Dinophyceae), a cryophilic dinoflagellate from Lake Erken, Sweden. Phycologia, 37(4), 284-291. Renjith, K., Chandramohanakumar, N., Joseph, M. M. (2011). Fractionation and bioavailability of phosphorus in a tropical estuary, Southwest India. Environmental monitoring and assessment, 174(1-4), 299-312. Rinehart, K. L., Harada, K., Namikoshi, M., Chen, C., Harvis, C. A., Munro, M. H., . . . Beasley, V. R. (1988). Nodularin, microcystin, and the configuration of Adda. Journal of the American Chemical Society, 110(25), 8557-8558. Robarts, R. D., Zohary, T. (1987). Temperature effects on photosynthetic capacity, respiration, and growth rates of bloom‐forming cyanobacteria. New Zealand Journal of Marine and Freshwater Research, 21(3), 391-399. Rothschild, L. J., Mancinelli, R. L. (2001). Life in extreme environments. Nature, 409(6823), 1092-1101. Ruttenberg, K. C. (1992). Development of a sequential extraction method for different forms of phosphorus in marine sediments. Limnology and Oceanography, 37(7), 1460-1482. Schindler, D. (1977). Evolution of phosphorus limitation in lakes. Science, 195(4275), 260-262. Schindler, D. E., Kitchell, J. F., He, X., Carpenter, S. R., Hodgson, J. R., Cottingham, K. L. (1993). Food web structure and phosphorus cycling in lakes. Transactions of the American Fisheries Society, 122(5), 756-772. Selig, U. (2003). Particle size-related phosphate binding and P-release at the sediment–water interface in a shallow German lake. Hydrobiologia, 492(1-3), 107-118. Silva, E. (2003). Emergence of a Microcystis bloom in an urban water body, Kandy Lake, Sri Lanka. Current science, 85(6), 723-725. Sivonen, K., Namikoshi, M., Evans, W., Carmichael, W., Sun, F., Rouhiainen, L., Rinehart, K. (1992). Isolation and characterization of a variety of microcystins from seven strains of the cyanobacterial genus Anabaena. Applied and environmental microbiology, 58(8), 2495-2500. Smith, V. H. (1983). Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Science, 221(4611), 669-671. Svrcek, C., Smith, D. W. (2004). Cyanobacteria toxins and the current state of knowledge on water treatment options: a review. Journal of Environmental Engineering and Science, 3(3), 155-185. Timms, R., Moss, B. (1984). Prevention of growth of potentially dense phytoplankton populations by zooplankton grazing, in the presence of zooplanktivorous fish, in a shallow wetland ecosystem. Limnology and Oceanography, 29(3), 472-486. Vasconcelos, V., Sivonen, K., Evans, W., Carmichael, W., Namikoshi, M. (1996). Hepatotoxic microcystin diversity in cyanobacterial blooms collected in Portuguese freshwaters. Water Research, 30(10), 2377-2384. Watanabe, M. F., Oishi, S., Harada, K.-I., Matsuura, K., Kawai, H., Suzuki, M. (1988). Toxins contained in Microcystis species of cyanobacteria (blue-green algae). Toxicon, 26(11), 1017-1025. Wehr, J. D., Thorp, J. H. (1997). Effects of navigation dams, tributaries, and littoral zones on phytoplankton communities in the Ohio River. Canadian Journal of Fisheries and Aquatic Sciences, 54(2), 378-395. Zhang, X.-j., Chen, C., Ding, J.-q., Hou, A., Li, Y., Niu, Z.-b., Laws, E. A. (2010). The 2007 water crisis in Wuxi, China: Analysis of the origin. Journal of Hazardous Materials, 182(1), 130-135. USEPA(2002),Ground Water and Drinking Water Distribution System Issue Paper Keweenaw algae (2015),A collection of freshwater algae ,http://www.keweenawalgae.mtu.edu Totally Cool Pix(2013),Water Pollution In China ,http://totallycoolpix.com/magazine/2013/02/water-pollution-in-chin FAO(2012),Food and Agriculture Organization of the United Nations ,http://www.fao.org/home/en
摘要: 
台灣因氣候及地形條件,導致民生用水相當依賴湖泊水庫。根據環保署102年環境監測年報,台灣離島28座水庫優養比例高達96%。金門縣為台灣第二大離島,島上共有11座水庫,均處於優養化狀態,且水體中存在釋放藻毒之藍綠菌(cyanobacteria),對於當地的湖庫生態與居民飲用水安全造成威脅。微囊藻毒素有強烈的肝毒性,容易誘發肝炎以及肝癌,對皮膚與黏膜有強烈刺激性,所造成的危害在世界各地層出不窮,當中不乏人類死亡的案例。
本研究以優養化湖泊金門太湖為對象,自2013年11月至2014年8月進行4次的採樣,於湖面上佈下11個採樣點,進行全湖域的水質、懸浮固體物與底泥的調查。結果顯示金門太湖地區之主要營養鹽來源為山外溪,其次為幹訓班水之排水溝,此外位於太湖湖面的光復亭小島因有大型鳥類群聚,所排泄的鳥糞亦可能為營養鹽來源。金門全年葉綠素a濃度介於8.9-118.5 µg/L,遠高於Carlson優養化單一指標7.2 µg/L之標準,藻毒濃度在四季的採樣中,2月之藻毒濃度最高,Microcystin-LR濃度為0.38 µg/L、Microcystin-RR濃度為0.13 µg/L,低於歐盟1.0 µg/L之標準,但藻毒問題仍為太湖水庫之隱憂。營養鹽部分,總磷濃度最高之月份為2月,平均濃度高159.1 µg/L,推測可能原因為太湖水位下降,使得總磷在湖水產生濃縮作用與11月至2月間湖水翻騰現象所造成。而氨氮濃度最高月份為8月,濃度平均達198.7 µg/L。營養鹽循環中,除了外部的營養鹽來源之外,底泥釋放也是營養鹽的來源之一,根據調查結果,太湖湖域沉積最嚴重之區域為小太湖,而沉積物中磷之濃度最高之區域為太湖南邊,就整體磷通量而言,小太湖區域為最高。以SEDEX分析金門太湖底泥之磷鍵結態,其中被視為較易釋放磷於水體的Ex-P與Fe-P佔總磷之比例高於50%,顯示底泥可能為太湖重要營養鹽來源之一。

Due to climatic and topographic conditions, domestic water source in Taiwan is highly dependent on reservoirs. In recent decades, due to economic development, there are more and more human activities in catchment area. They caused eutrophication of reservoir by discharging plenty of nutrients into water body. This phenomenon is worsened at Taiwan’s isolated islands. According to Taiwan EPA, the percentage of eutrophic lake in Kinmen county is up to 96% in 2013. Thus, the water quality on this isolated island becomes a highly imperative problem. In Kinmen, Tai-Hu Reservoir (THR) is one of the major drinking water sources. THR has been seriously affected by eutrophication because it is teemed with cyanobacteria. Here we focused on the water quality monitoring results of 11 stations in THR in terms of Chlorophyll a (Chl-a), total phosphorus, ammonia nitrogen, nitrite, nitrate, microcystin-LR (MC-LR), microcystin-RR (MC-RR), phosphorus in sediment core samples, and sediment deposition rates.
This research is focused on THR and finished a full-year monitoring from November in 2013 to August in 2014. Eleven sampling station was installed in the lake for whole lake monitoring in terms of water quality, suspended solids and sediments. The results indicated that the main source of nutrients is Shan-Wie Creek, and the drainage of Corporal Training Camp is the second major source. In addition, the feces of migrating birds on the Kuan-Fuh Island in the lake might be a source of phosphorus, too. The whole-year concentration of Chl-a is between 8.9 and 118.5 µg/L, which is much higher than the single-parameter eutrophic state index based on Chl-a only, i.e., 7.2 µg/L. Algal toxin level is at its highest in February with microcystin-LR concentration at 0.38 µg/L and microcystin-RR concentration at 0.13 µg/L. Microcystin-LR concentration is below EU standard at 1.0 µg/L. However, algal toxin is still an impending problem. For the nutrients, total phosphorus is highest in February with an average concentration at 159.1 µg/L probably because the reversing of water stratification and concentrating effects brought about by lowered water level or decreased water volume in winter season. The highest ammonium-nitrogen concentration falls in August at as high as 198.7 µg/L. In the nutrient cycle, apart from the external source for phosphorus, the lake sediment may also be a significant source. According to the results, the Small Tai-Hu Lake (at the west side of THR) is the area that has the highest deposition of sediments but the highest phosphorus concentration is at the south side of THR. For the flux of phosphorus, the Small Tai-Hu Lake is still at the top. According to the results by a sequential extraction method (SEDEX) exhibits that bioavailable phosphorus portion is higher than 50% indicated that the lake sediment could be a major source of phosphorus in THR.
URI: http://hdl.handle.net/11455/91662
Rights: 同意授權瀏覽/列印電子全文服務,2016-07-31起公開。
Appears in Collections:環境工程學系所

Files in This Item:
File SizeFormat Existing users please Login
nchu-104-7102063028-1.pdf4.14 MBAdobe PDFThis file is only available in the university internal network   
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.