Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/9166
DC FieldValueLanguage
dc.contributor張振豪zh_TW
dc.contributor.author李明勳zh_TW
dc.contributor.authorLee, Ming-Shiunen_US
dc.contributor.other電機工程學系所zh_TW
dc.date2013en_US
dc.date.accessioned2014-06-06T06:42:47Z-
dc.date.available2014-06-06T06:42:47Z-
dc.identifierU0005-2608201314131700en_US
dc.identifier.citation[1]I. Doms, P. Merken, R. Mertens, and C. Van Hoof, “Integrated capacitivepower-management circuit for thermal harvesters with output power 10to 1000μW,” in Proc.IEEE International Solid-State Circuits Conference,Feb. 2009, pp.300-301. [2]E.Torres and G.Rincon-Mora,“Energy-harvesting chips and quest for everlasting life,”Jun. 2005, http://www.eetimes.com/ . [3]P.Chen, K. Ishida, X. Zhang, Y. Okuma, Y. Ryu, M. Takamiya, and T. Sakurai,“0.18-V input charge pump with forward body biasing in startup circuit using 65nm CMOS,”in Proc. IEEE Custom Integrated Circuits Conference, Sep. 2010, pp. 239-242. [4]A. Richelli and Z.M. Kovacs-Vajna,“A DC/DC boosting technique and power management for ultralow-voltage energy harvesting applications,”IEEE Transactons on Industrial Electronics, vol. 59, no.6, pp. 2701-2708, Jun. 2012. [5]G. Palumbo and D. Pappalar,“Charge pump circuits: An overview on design strategies and topologies,”IEEE Circuits and Systems Magazine, vol. 10, no. 1, pp. 31-45, First Quarter, 2010. [6]N. Mohan, T. M. Undeland, and W. P. Robbins,Power Electronics,3nd edition, Chapter 7, John Wiley & Sons, Inc., 2003. [7]J. Kimball, T. Flowers, and P. Chapman,“Low-input-voltage, low power boost converter design issues,”IEEE Power Electron. Lett., vol.2, no. 3, pp. 96-99, Sep. 2004. [8]J. Damaschke, “Design of a low-input-voltage converter for thermoelectric generator,” IEEE Transactions on Industry Applications, vol. 33, no. 5, pp. 1203–1207, Sep. 1997. [9]P. Spies, M. Pollak, and G. Rohmer, “Energy harvesting for mobile communication devices,” in Proc.International TelecommunicationsEnergy Conference, Sep. 2007, pp.481–488. [10]T. J. Seeback. “Magnetische Polarization der Metalle und Erze durch Temperature-Differenze. Abhand deut.”Akad. Wiss.Berlin, pp. 265-373, 1821. [11]J. Lim, C.-K.Huang, M. Ryan, G. J. Snyder, J. Herman, and J.-P.Fleurial,“MEMS/ECD method for making Bi2−xSbxTe3 thermoelectric devices,” NASA Tech Briefs, vol. 32, no. 7, pp. NPO–30 797, Jul. 2008. [12]S.Lineykin and S. Ben-Yaakov, “Modeling and analysis of thermoelectric modules,” IEEE Transactions on Industry Applications, vol. 43, no. 2, pp. 505–512, Mar. 2007. [13]Hsien-Wen Ko,“熱電轉換及其應用,”科技發展政策報導,2007年9月第五期第51-65頁。 [14]林克衛,“熱電材料在汽車廢熱回收的應用,”車輛研測資訊, ,pp.26-27, Sept. 2006. [15]J. Yang,“Potential applications of thermoelectric waste heat recovery in the automotive industry,” in Proc.International Conference onThermoelectrics, Jun. 2005, pp. 170-174. [16]E. Thacher, et al.,“Electric energy generation from the exhaust of a light truck,” in Proc.DOE/EPRI High Efficient Thermoelectric Workshop, 2004. [17]Gary L. Bennett,“Space nuclear power: opening the final frontier,” in Proc.4th International Energy Conversion Engineering Conference and Exhibit (IECEC), Jun. 2006, pp. 26-29. [18]Y. K. Ramadass and A. P. Chandrakasan, “A batteryless thermoelectricenergy-harvesting interface circuit with 35 mV startup voltage,” inProc. IEEE Int. Solid-State Circuits Conf., Feb. 2010, pp. 486–487. [19]Y. K. Ramadass, Energy Processing Circuits for Low-Power Applications, Ph.D. Dissertation, Massachusetts Institute of Technology,Cambridge, MA, Jun. 2009. [20]P.-S. Weng, H.-Y.Tang, P.-C.Ku, L.-H.Lu, “50 mV-Input batterylessboost converter for thermal energy harvesting,”IEEE Journal of Solid-State Circuits,vol. 48, no. 4, pp. 1031-1041, Mar. 2013. [21]P. Chen, K. Ishida, K. Ikeuchi, X. Zhang, K. Honda, Y. Okuma, Y. Ryu,M. Takamiya, T. Sakurai, “Startup techniques for 95mV step-up converter by capacitor pass-on scheme and VTH-tuned oscillator with fixed charge programming,” IEEE Journal of Solid-State Circuits,vol. 47, no. 5, May 2012. [22]E. Carlson, K. Stunz, and B. Otis, “20 mV input boost converter forthermoelectric energy harvesting,” IEEE Journal of Solid-State Circuits, vol.45, no. 4, pp. 741–750, Apr. 2010. [23]H.-P.Le, C.-S.Chae, K.-C.Lee, S.-W.Wang, G.-H.Cho, G.-H. Cho, “Asingle-inductor switching dc–dc converter with five outputsand ordered power-distributive control,”IEEE Journal of Solid-State Circuits, vol. 42, no. 12, pp. 2706– 2714, Dec. 2007. [24]“LT3467/LT3467A.: 1.1A step-up DC/DC converter inthinSOT with integrated soft-start,” 2003, http://www.linear.com. [25]E.Mendez-Delgado andG. J. Serrano,“A 300mV low-voltage start-up circuit for energy harvesting systems," in Proc. IEEE International Symposium on Circuits and Systems, May 2011, pp. 829-832. [26]綠色電子聯盟 [27]P. Chen, K. Ishida, X. Zhang, Y. Okuma, Y. Ryu, M. Takamiya, and T. Sakurai, “A 80-mV input, fast startup dual-mode boost converter with charge-pumped pulse generator for energy harvesting,”in Proc. IEEE Asian Solid-State Circuit Conference, Nov. 2011, pp. 33-36.en_US
dc.identifier.urihttp://hdl.handle.net/11455/9166-
dc.description.abstract近年來能量擷取技術為相當熱門的研究領域,利用這項技術我們可以將環境的能量,如太陽能、熱能及振動能等轉換成電能,再運用到不需外接電池之電子裝置,像是無線感測網路或是可穿戴式的生醫裝置。而其中相當關鍵的部分就是介於能量源輸出與負載電路間的介面電路,此介面電路扮演能量處理並提供適當的電壓及電流給負載電路。 在可穿戴式電子產品中,熱能轉電能的應用遇到的最大問題就是低電壓輸出,為了使負載電路能夠使用這電能,用以升壓的介面電路為設計重心。因此我們設計了一低電壓啟動的直流轉直流升壓轉換器,並利用負電壓控制技術(Negative Voltage Control Technique, NVCT)有效地降低Native NMOS功率元件關閉電流過大的問題,進一步提升效率。 轉換器由低電壓時脈產生器、負電壓產生器、脈波產生器、電壓偵測器、推動放大器、功率電晶體及被動元件構成。首先電壓源提供電壓給低電壓時脈產生器,輸出一時脈訊號去驅動Native NMOS的功率開關,當輸出電容充電至預定電壓值後,由電壓偵測器送出訊號去切換操作,利用負電壓產生器輸出的負電壓去關閉具初始導通特性的功率電晶體,由一般臨界電壓的功率電晶體負責第二階段的升壓。 本電路使用TSMC 0.18um 1P6M CMOS的製程,啟動電壓為300mV,輸出電壓在空載時可升壓至2V,當負載為1.5mA時有最高電壓轉換效率為63%,最大負載電流可至3.2mA,其對應的輸出電壓為1V。zh_TW
dc.description.abstractIn recent years, energy harvesting technologies have become a very popular field of study. With these technologies, we can transform environmental energy, such as solar energy, heat, and vibration energy, into electric energy. The harvesting energy can be used for electronic devices without external battery, such as wireless sensor networks or wearable biomedical devices. A critical part of the whole system is the interface circuit that lies between the energy source and the load circuit to provide proper voltage and current level to the load circuit. In wearable electronics products, the biggest problem of the application of thermal energy transfer is the low voltage output. For the load circuit to use this power, an interface circuit for boosting is the design to focus. Thus, a low-voltage startup DC-to-DC boost converter is designed and the negative voltage control technology (NVCT) is utilized to enhance efficiency by minimizing the leakage current when the Native NMOS is off. The converter is composed of low voltage clock generator, negative voltage generator, pulse generator, voltage detector, buffer, power transistor, and passive element. First, voltage source provides a voltage to the low voltage clock generator, which outputs clock signal to drive the Native NMOS power switch. When the output capacitor is charged to a predetermined voltage value, the voltage detector sends a signal to change operation. The negative voltage generator generates a negative voltage to turn off the Native NMOS power transistor. Finally, the normal VTH power switch is responsible for the second phase of the step-up. The circuit was designed by using TSMC 0.18um 1P6M CMOS process. The startup voltage is 300mV and the output voltage can reach 2V with no load. The maximum voltage conversion efficiency is 63% with 1.5mA of output current, and the maximum load current is 3.2mA with 1V output voltage.en_US
dc.description.tableofcontents致謝 I 摘要 II ABSTRACT III 目錄 IV 圖目錄 VI 表目錄 VIII 第1章緒論 1 1.1背景簡介 1 1.2研究動機 2 1.3論文架構 3 第2章熱電能轉換器介紹 4 2.1熱電轉換原理 4 2.2熱電產生器(THERMOELECTRIC HARVESTER)等效模型 5 2.3熱電材料的應用 7 2.3.1汽車廢熱回收 7 2.3.2放射線同位素熱電機 9 2.3.3應用於低溫度梯度之熱電系統 10 第3章穩壓器基本概念分析 12 3.1低壓降線性穩壓器(LOW DROPOUT REGULATOR, LDO) 12 3.2電荷幫浦(CHARGE PUMP) 13 3.3切換式穩壓器(SWITCHING REGULATOR) 14 3.3.1降壓型轉換器(Buck Converter) 14 3.3.2升壓型轉換器(Boost Converter) 18 3.3.3升降壓轉換器(Buck-Boost Converter) 22 3.4低壓啟動升壓型轉換器 25 3.4.1應用機械式開關(Mechanical Switch)作為啟動元件 25 3.4.2使用耦合電感(Coupled Inductors)之升壓轉換器 26 3.4.3二階升壓型轉換器(Two Stage Boost Converter) 27 3.4.4應用電荷幫浦(Charge Pump)作為啟動電路 28 3.4.5應用LC震盪器(LC-Oscillator)作為啟動電路 29 第4章低壓啟動直流轉直流升壓轉換器 30 4.1系統架構分析 30 4.2負電壓產生器(NEGATIVE VOLTAGE GENERATOR) 33 4.3電壓偵測器 35 4.4低電壓時脈產生器 37 4.4.1環形振盪器(Ring Oscillator) 38 4.4.2工作週期產生器 39 4.5脈波產生器 41 第5章電路模擬數據及結果 43 5.1模擬結果 43 5.1.1負電壓產生器 43 5.1.2電壓偵測器 45 5.1.3時脈產生器 46 5.1.4脈波產生器 46 5.1.5整體電路模擬 47 5.2佈局(LAYOUT) 51 5.3模擬結果 53 5.4論文比較表 53 第6章結論與未來展望 55 6.1結論 55 6.2未來展望 55 參考文獻 56zh_TW
dc.language.isozh_TWen_US
dc.publisher電機工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2608201314131700en_US
dc.subject能量zh_TW
dc.subjectenergy harvestingen_US
dc.subject擷取zh_TW
dc.subject低電壓zh_TW
dc.subject升壓zh_TW
dc.subjectlow voltageen_US
dc.subjectboosten_US
dc.subjectstep upen_US
dc.title具負電壓控制技術之低電壓直流轉直流升壓轉換器zh_TW
dc.titleA Low Voltage Step-Up DC-DC Converter with Negative Voltage Control Techniqueen_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1zh_TW-
item.grantfulltextnone-
Appears in Collections:電機工程學系所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.