Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91724
標題: 添加滑石粉及活性碳對Photo-Fenton降解乙醯胺基酚(ACE)之影響
Degradation of acetaminophen with talc and activated carbon in wastewater by Photo-Fenton
作者: Yi-Chun Liu
劉益均
關鍵字: Photo-Fenton;退熱止痛藥;遮蔽;滑石粉;活性碳;Photo-Fenton oxidation process;Antipyretic and analgesic drugs;Shielding;Talc;activated carbon
引用: 1.林正芳、林郁真、康佩群、胡景堯,行政院環境保護署,特定污染源廢(污) 水 中新興污染物管制研究專案計畫,期末報告(修正稿),2008。 2.陳嘉惠、陳櫻丹、林亭儀、李俊璋,「新興環境污染物綜論」,環境健康風險季刊,行政院衛生署國民健康局,第二季,2009。 3.林正芳、林郁真、余宗賢,新興污染物(抗生素與止痛藥)於特定污染源環境之流佈,持久性有機污染物(含戴奧辛)研討會,2008。 4.張靜宜、謝季吟,家庭廢棄藥品處置與環境風險認知之研究—以台灣南部民眾為例,碩士論文,國立屏東科技大學環境工程與科學系,2011。 5.林政諺、蔡曉信、葉名倉,乙醯胺苯酚(acetaminophen (Paracetamol),國科會科技部高瞻自然科學教學資源平台,2011。 6.林志明,國泰藥訊,第四十四期,2014。 7.洪堯民,急性乙醯胺酚中毒,台灣醫界第49卷第8期,高雄榮民總醫院,2000。 8.盧冠宇、賴建名,Acetaminophen中毒的機轉與藥物治療,藥學雜誌 96期, 光田醫療社團法人光田綜合醫院藥劑部,2008。 9.林如愔,細胞色素(Cytochrome)P450,國科會科技部高瞻自然科學教學資源 平台,國立臺灣師範大學生命科學系,2014。 10.林郁庭,探討對乙醯氨基酚經研磨後其晶型改變之機制,國立東華大學生物技術研究所,碩士論文,2010。 11.葉芳伶、宋宏紅、黃大駿,人類常用藥物—抗生素氯四環黴素 (chlortetracycline)及止痛劑乙醯胺酚(acetaminophen)對石田螺 (Sinotaia quadrata)的影響,Bulletin of Malacology, Taiwan 貝類學報35:62-78,2011。 12.鐘佳君,UV/H2O2分解染料之動力學,大同大學,碩士論文,2006。 13.蔡維馨,紫外光/過氧化氫程序降解辛基苯酚聚氧乙烯醇水溶液之研究,國立中央大學,碩士論文,2011。 14.申永順,以紫外光卅過氧化氫程序處理含氯酚類有機溶液反應行為之研究,台灣科技大學,碩士論文,1992。 15.游非庸,Photo-Fenton 相關程序氫氧自由基生成及分解染料之研究,淡江大 學,博士論文,2005。 16.吳宛錚,Photo-Fenton程序降解絕緣油中多氯聯苯之研究,國立屏東科技大 學,碩士論文,2006。 17.呂理安,利用光 Fenton法降解與去除水中加保扶毒性之研究,國立交通大 學,博士論文,2011。 18.王德修、康世芳,Photo-Fenton 分解硝基酚之研究,第 23 屆廢水處理技 術研討會論文集,602-609,1998。 19.廖志祥、康世芳、柏雪翠,Photo-Fenton 程序參數對氫氧自由基濃度之影 響,第 23 屆廢水處理技術研討會論文集,543-541,1998。 20.林妙津、陳藹然,活性碳(Activated Charcoal),國科會科技部高瞻自然 科學教學資源平台,台北縣立三民高級中學化學科,國立台灣大學化學系,2010。 21.傅家溱,使用Fenton程序處理酸性染料(Eosin Yellow)之研究,國立中興 大學,碩士論文,2011。 22.鄭佩珊,應用電化學合成過氧化氫處理染料廢水(RB5)之研究,國立中興大學,碩士論文,2011。 23.邱品嘉,以Fenton法及Photo-Fenton法降解含磺胺甲基噁唑之廢水,國立中 興大學,碩士論文,2014。 24.尤伶如,藉由Electro-Fenton法降解含乙醯胺基酚之廢水,國立中興大學,碩士論文,2014。 6-2英文文獻 1.Aleboyeh, A., Moussa, Y., and Aleboyeh, H., 2005. The effect of operational parameters on UV/H2O2 decolourisation of Acid Blue 74, Dyes and Pigments, 66, 129-134. 2.Amin, H., Amer, A., El Fecky, A., and Ibrahim, I., 2008. Treatment of textile waste water using H2O2/UV system. Physicochemical Problems of Mineral Processing , 42, 17-28 . 3.Amorim, Camila, C., Leao, Monica, M.D., Moreira, Regina, F.P.M., Fabris, Jose, D., and Henriques, Andreia, B., 2013. Performance of blast furnace waste for azo dye degradation through photo-Fenton-like processes. Chemical Engineering Journal, 224 , 59–66. 4.Arnold, S. M., Hickey, W. J., and Harris, R. F., 1995. Degradation of atrazine by Fenton''s reagent Condition optimization and product quantification. Environmental Science & Technology, 29, 2083-2089. 5.Ayesha, Mahmood, Shaukat, Ali, Hamna, Saleem, and Tanveer, Hussain, 2011. Optimization for Degradation of Commercial Reactive Yellow Dye 145 Through Fenton’s Reagent. Asian Journal of Chemistry, Vol. 23, No. 9, 3875-3878. 6.Chou, S., Huang, Y. H., Lee, S. N., Huang, G. H., and Huang, C., 1999. Treatment of high strength hexamine-containing waste water by electro-Fenton method. Water Research, 33, 751-759. 7.De Luna, M. D. G., Briones, R. M., Su, C. C., Lu, M. C., 2013. Kinetics of acetaminophen degradation by Fenton oxidation in a fluidized-bed reactor. Chemosphere, 90, 1444–1448. 8.De Luna, M. D. G., Veciana, M. L., Su, C. C., Lu, M. C., 2012. Acetaminophen degradation by electro-Fenton and photoelectro-Fenton using a double cathode electrochemical cell. Journal of Hazardous Materials, 217–218, 200–207. 9.Duran, A., Monteagudo, J.M., Carnicer, A., and Ruiz-Murillo, M., 2011. Photo-Fenton mineralization of synthetic municipal wastewater effluent containing acetaminophen in a pilot plant. Desalination 270, 124–129. 10.Ebrahiem Ebrahiem, E., Al-Maghrabi Mohammednoor, N., Mobarki Ahmed, R., 2013. Removal of organic pollutants from industrial wastewater by applying photo-Fenton oxidation technology. Arabian Journal of Chemistry, 10, 1016. 11.Elmorsi, T. M., Riyad, Y. M., Mohamed, Z. H., Hassan, M.H., and Bary, A. E, 2010. Decolorization of Mordant red 73 azo dye in water using H2O2/UV and photo-Fenton treatment. Journal of Hazardous Materials, 174, 352-358. 12.Feng, J., Hu, X., Yue, P. L., 02006. Effect of initial solution pH on the degradation of Orange II using clay-based Fe nanocomposites as heterogeneous photo-Fenton catalyst. Water Research, 40, 641– 646. 13.Ghaly, M. Y., Hartel, G., Haseneder, R., 2009. Integrated coupled systems as biodegradability enhancement of textile wastewater by photo-fenton process. Afinidad LXVI, 543. 14.Holtz, S., 2006. There is no “Away.” Pharmaceuticals, personal care products, and endocrine-disrupting substances: Emerging contaminants detected in water. Canadian institude for environmental law and policy. 15.Kang, S. F., Liao, C. H., and Po, S. T., 2000. Decolorizing of textile wastewater by Photo-Fenton oxidation technology. Chemosphere, 41, 1287-1294. 16.Kavitha, V. and Palanivelu, K., 2004. The role of ferrous ion in Fenton and photo-Fenton processes for the degradation of phenol. Chemosphere, 55, 1235. 17.Klamerth, N., Rizzo, L., Malato, S., Manuel, I., Maldonado, A. Agu‥era, Ferna’ndez-Alba, A.R., 2010. Degradation of fifteen emerging contaminants at μg L -1initial concentrations by mild solar photo-Fenton in MWTP effluents. Water research, 44, 545 – 554. 18.Krutzler, T. and Bauer, R., 1999. Optimization of a photo-fenton prototype reactor. Chemophere, 38(11), 2517-2532. 19.Legrini, O., Oliveros, E. and Braun, A. M., 1993. Photochemical Processes for Water Treatment. Chemical Reviews, 93, 671-698. 20.Lin, Y. C., Yu, T. H., Lin, C.F., 2008.Pharmaceutical contamination in residential, industrial, and agricultural waste streams:Risk to aqueous environments in Taiwan. Chemosphere, 74,131–141. 21.Lindsey, M. E. and Tarr, M. A., 2000. Quantitation of hydroxyl radical during Fenton oxidation following a single addition of iron and peroxide . Chemosphere , 41(3), 409-417. 22.Li, Yanyun , Song, Weihua , Fu, Wenjie, Tsang, Daniel C.W., Xin, Yang, 2015. The roles of halides in the acetaminophen degradation by UV/H2O2 treatment: Kinetics, mechanisms, and products analysis. Chemical Engineering Journal, 271, 214–222. 23.Luisa, M. Pastrana-Martinez, Nuno Pereira, Rui Lima, Joaquim, L. Faria, Helder, T. Gomes, Adrian, M.T. Silva, 2014. Degradation of diphenhydramine by photo-Fenton using magnetically recoverable iron oxide nanoparticles as catalyst. Chemical Engineering Journal, 261, 45–52. 24.Luis, Ferney, Gonzalez-Bahamon, Felicien, Mazille, Luis, Norberto, Benitez, Cesar, Pulgarin, 2011. Photo-Fenton degradation of resorcinol mediated by catalysts based on iron species supported on polymers. Journal of Photochemistry and Photobiology A: Chemistry, 217, 201–206. 25.Lunar, L., Sicilia, D., Rubio, S., Perez-Bendito, D., and Nickel, U., 2000. Degradation of photographic developers by Fenton reagent: Condition optimization and kinetics for metol oxidation. Water Research, 34(6), 1791-1802. 26.Mahmoud, G. E. A. and Ismail, L. F. M., 2011. Factors Affecting the Kinetic Parameters Related to the Degradation of Direct Yellow 50 by Fenton and Photo-Fenton Processes. J. Basic. Appl. Chem., 1(8)70-79. 27.Maletzky, P., and Bauer, R., 1998. The photo-fenton method-degradation of nitrogen containing organic compounds. Chemophere, 37(5), 899-909. 28.Ma, Y. S., Chang, C. N., Chao, C. R., 2012. Decolorization of Rhodamine B by a Photo-Fenton Process: Effect of System Parameters and Kinetic Study. International Journal of Environment and Resource, Vol. 1 Iss. 2. 29.Manohar, Shanthi, Elias, Ginish, Duraisamy, Rajamanickam, 2012. Optimization of the heterogeneous photo Fenton degradation of a model pollutant, benzyl alcohol using UV/ZnO process. Usak University Journal of Material Sciences, 2, 123 – 136. 30.Nawaphorn, Khumsiri, Ranjna, Jindal,Nuttawan, Yoswathana and Woranart, Jonglertjunya, 2010. Degradation of Humic Acid in Soil Aqueous Extract Using the Fenton Reaction and a Microbiological Technique. Kasetsart J. (Nat. Sci.) 44 : 1069 –1078. 31.Oancea, P., Meltzer, V., 2013. Photo-Fenton process for the degradation of Tartrazine (E102) in aqueous medium. Journal of the Taiwan Institute of Chemical Engineers, 44, 990–994. 32.Samet, Y., Hmani, E. and Abdelhedi, R., 2012. Fenton and solar photo-Fenton processes for the removal of chlorpyrifos insecticide in wastewater. ISSN 0378-4738 (Print) = Water SA Vol. 33.Sim, W. J., Lee, J. W., Lee, E. S., Shin, S. K., Hwang, S. R., Oh, J. E., 2011. Occurrence and distribution of pharmaceuticals in wastewater from households, livestock farms, hospitals and pharmaceutical manufactures. Chemosphere, 82,179–186. 34.Tang, W. Z. and Huang, C. P., 1996. 2-4 Dichlorophenol oxidation kinetics by Fenton regant. Environmental Techology, 17, 1371-1378. 35.Walling, C., 1975. Fenton''s reagent revisited. Accounts of Chemical Research, 8(1), 121-131. 36.Will, I. B. S., Moraes, J. E. F., Teixeira, A. C. S. C. R., Guardani, and Nascimento, C. A. O., 2004. Photo-Fenton degradation of wastewater containing organic compounds in solar reactors. Separation and Purification Technology, 34, 51-57. 37.Wolfgang, G., Thomas, K., Andreas, G., Sixto, M., Julia, C., Rupert, B., and Fernandez, A. A. R., 2003. Photo-Fenton treatment of water containing natural phenolic pollutants. Chemophere, 50, 71-78. 38.Xu, B., Gao, N. Y., Cheng, H., Xia S. J., Rui M., and Zhao, D., 2009. Oxidative degradation of dimethyl phthalate (DMP) by UV/H2O2 process. Journal of Hazardous Materials, 162, 954-959. 39.Zang, Y., Farnood, R., 2005. Effects of hydrogen peroxide concentration and ultraviolet light intensity on methyl tert-butyl ether degradation kinetic. Chemical Engineering Science, 60, 1641-1648. 40.Zanta, C. L. P. S., Martinez-Huitle, C. A., 2009. DEGRADATION OF 2-HYDROXYBENZOIC ACID BY ADVANCED OXIDATION PROCESSES. Brazilian Journal of Chemical Engineering, Vol. 26, No. 03, pp. 503 – 513. 41.Zheng, H., Pan, Y. & Xiang, X., 2007. Oxidation of acidic dye Eosin Y by the solar photo-Fenton processes. Journal of Hazardous Materials, 141, 457-464. 42.Zuo, Y. and Hoigne, J., 1992. Formation of hydrogen peroxide and depletion of oxalic acid in atmospheric water by photolysis of iron-(III)─oxalate complexes. Environmental Science & Technology, 1992, 26, 1014-1022. 43.Zuo, Y. and Hoigne, J., 1994. Photochemical decomposition of oxalic, glycoxalic and pyruvic acids catalysed by iron in atmospheric waters. Atmospheric Environment, 2, 1231-1239.
摘要: 
高級氧化程序(AOPs)為一種能夠產生強氧化力且非選擇性氫氧自由基(‧OH)的氧化處理程序,其被廣泛的運用於降解水中各種有機物汙染物。
本研究以乙醯胺基酚(acetaminophen, ACE)退熱止痛藥作為目標污染物,初始濃度為10mg/L,控制不同參數(H2O2濃度、Fe2+濃度、光強度等),利用五種氧化程序紫外光/過氧化氫(UV/H2O2)、亞鐵離子/過氧化氫(Fenton)、紫外光/亞鐵離子/過氧化氫(Photo-Fenton)、紫外光/亞鐵離子/過氧化氫/活石粉(Photo-Fenton/Talc)、紫外光/亞鐵離子/過氧化氫/活性碳(Photo-Fenton /AC),對廢水中ACE以及化學需氧量(COD)去除,並探討各程序間之影響與差異。
研究結果顯示,Fenton 程序之最適操作條件為pH = 3、[H2O2]/[Fe2+] = 0.99/0.066 mM時,ACE去除率為68.7%。在Photo-Fenton 程序之最適操作條件光強度 = 90 W、pH = 3、[H2O2]/[Fe2+] = 0.99/0.066 mM下,其ACE去除率為78.1%。UV/H2O2程序中,ACE去除率則為14.4%。在三種程序中
,不論是ACE或COD的去除率,皆以Photo-Fenton 程序為最佳。
此外,不論滑石粉或活性碳的添加皆會因為遮蔽或吸附效應之影響而使Photo-Fenton程序的去除成效下降,但若將活性碳(0.1 g/L)於反應60分鐘後再添加至系統中,可有效提升ACE之去除率,Photo-Fenton/Talc及Photo-Fenton/AC程序中ACE去除率各別為66.3%、85.8%。
在所有程序中,以Photo-Fenton/AC(60 min)程序具有最佳的ACE及COD去除效率,其中所增加之去除率為活性碳吸附作用所導致。

Advanced oxidation processes (AOPs) is a kind of oxidation processes which can produce strong oxidation ability, with non-specific hydroxyl radical
(.OH), and it is widely used to degrade a variety of organic pollutants in the wastewater. In the study, the pollutant initial concentration is 10 mg/L. The intention of research is in order to investigate the removal and chemical oxygen demand (COD) of Acetaminophen(ACE) antipyretic and analgesic drugs by UV/H2O2, Fenton, Photo-Fenton and Photo-Fenton/AC systems with controlling different parameter (H2O2 concentration, Fe2+ concentration, light intensity). Trying to discuss about the differences and effects between each process.
The results showed that, the optimal conditions for the removal rate of ACE (68.7%) were [H2O2]/[Fe2+] = 0.99/0.066 mM at pH 3 in the Fenton process. Photo-Fenton process with optimal parameters of UV light= 90 W, [H2O2]/[Fe2+]= 0.99/0.066 mM at pH 3, the ACE removal rate is 78.1%. As to the UV/H2O2 system, the ACE removal rate is 14.4%. In the three process, Photo-Fenton process has the best effect of the removal rate of either ACE or COD.
Additionally, either talc or activated carbon addition, the removal effect of Photo-Fenton process both reduced according to the influence of shielding or adsorption effect. However, the removal rate of ACE can be effectively enhanced by adding activated carbon in 60 minute after reaction. The removal rate of ACE in Photo-Fenton/Talc and Photo-Fenton/AC process were 66.3% and 85.8%, respectively.
Among all the processes, Photo-Fenton/AC(60 min) process has the best ACE and COD removal efficiency and the increase of removal rate results from adsorption effect by activated carbon.
URI: http://hdl.handle.net/11455/91724
Rights: 同意授權瀏覽/列印電子全文服務,2018-06-25起公開。
Appears in Collections:環境工程學系所

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-104-7102063017-1.pdf2.59 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.