Please use this identifier to cite or link to this item:
標題: Design and Analysis of Dual-Curvature with Dual-Focus of Microlens Array
作者: Yen-Ting Tu
關鍵字: Microball lenses;Dual focus;雙層透鏡;微透鏡;雙曲率透鏡
引用: [1] Z.D.Popovic, R.A.Sprague, G.A.N. Connell, “Technique for monolithic fabrication of microlens arrays,” Applied Optics, Vol. 27, Issue: 7, pp. 1281-1284, 1988. [2] M.G. Han, Y. J. Park, S-H. Kim, B. S. Yoo and H. H. Park, “Thermal and chemical stability of reflowed-photoresist microlenses,” Journal of Micromechanics and Microengineering, Vol. 14, Issue: 3, pp. 389-302, 2004. [3] R.F. Shyu, H. Yang, W. R.Tsai, and J. C. Tsai, “Micro-ball lens array s fabrication in photoresist using PTFE hydrophobic effect,” Microsystem Technologies, Vol. s 13, Issue: 11-12, pp. 1601-1606, 2007. [4] H. Yang, C. K. Chao, C.P . Lin. and C. H. Shen “Micro-ball lens array modeling and fabrication using thermal reflow in two polymer layers.,” Journal of Micromechanics and Microengineering, Vol. 14, Issue: 2, pp. 277-282, 2004. [5] C. T. Pan and C. Y. Su, “Study of micro-lens array by reflow process.,” Journal of Modern Optics, Vol. 17, Issue: 2, pp. 2843-2856, 2008. [6] D. J. Marino, R. R. Pedro, C.J. Paulo, and C.J. Higino,, “Measurement and statistical analysis toward reproducibility validation of AZ4562 cylindrical microlenses obtained by reflow,” Measurement: Journal of the International Measurement Confederation, Vol. 49, Issue: 1, pp. 60-70, 2014. [7] M. R. Wang and H. Su, “Laser direct-write gray-level mask and one-step etching for diffractive microlens fabrication,” Applied Optics, vol. 37, pp. 7568-7576, 1998. [8] K. Naessens, H. Ottevaere, P. V. Daele, R. Baets, “Flexible fabrication of microlenses in polymer layers with excimer laser ablation,” Applied Surface Science, vol. 208-209, pp. 159-164, 2003. [9] S. Chang and J. B. Yoon, “Shape-controlled, high fill-factor microlens arrays fabricated by a 3D diffuser lithography and plastic replication method,” Optics Express, Vol. 12, pp. 6366-6371, 2004. [10] J. H. Lee, W. S. Choi, K. H. Lee and J. B. Yoon, “A simple and effective fabrication method for various 3D microstructures: backside 3D diffuser lithography,” Journal of Micromechanics and Microengineering, Vol. 18, No. 123015, 2008. [11] H. W. Choi, E. Gu, C. Liu, J. M. Girkin, C. G. Jiang and M. D. Dawson, “Fabrication and evaluation of GaN negative and bifocal microlenses,” Journal of Applied Physics, Vol. 97, Issue:6 , 2005. [12] J. M. Lee, D. H. Lee, and Y. Baek, “Dual-focus dual-layered microlens array,” Opto-Electronics and Communications Conference, vol. 161, pp. 889-890 (2012). [12] J. M. Lee, D. H. Lee, and Y. Baek, “Fabrication of dual-focus dual-layered microlens.” Optics Communications, vol. 289, pp. 69-74 (2013). [13] J. M. Lee, D. H. Lee, and Y. Baek, “Dual-focus dual-layered microlens array,” Opto-Electronics and Communications Conference, vol. 161, pp. 889-890 (2012). [14] H. Hu, H. Hongmiao, J. Shao, Y. C. Ding, C. G. Jiang and H. Z. Liu,“Fabrication of bifocal microlens arrays based on controlled electrohydrodynamic reflowing of pre-patterned polymer,” Journal of Micromechanics and Microengineering, Vol. 24, Issue:9 , 2014. [15] S. E. Nielsen, and N. Ellis, Z,“Dual-focus laser cutting,” Welding in the World, Vol. 46, Issue:3-4 , pp. 33-40, 2002. [16] G. W. Zang, and J. Z. Pu,“Stochastic electromagnetic beams focused by a bifocal lens,” Journal of the Optical Society of America A: Optics and Image Science, and Vision, Vol. 25, Issue:7 ,pp. 1710-1715, 2008. [17] 林煒晟,軟式變焦鏡頭設計與製作,台灣科技大學機械工程系碩士論文, 2006. [18] 林哲平,「以微影製程開發新型光學微透鏡陣列模仁 之研究」,博士論文,國立台灣科技大學機械工程所,台北(2004)。 [19] 張哲煥,「雙層曲率雙焦點微透鏡陣列之研究」,碩士論文,國立中興大 學精密工程所,2014。 [20] C.T. Pan, Y. C. Chen, M. F. Chen, Y. C. Ding, and Y. C. Hsu,“Fabrication and design of various dimensions of multi-step ashperical microlens arrays for OLED package,” Optics Communications, Vol. 284, Issue:13, pp. 3323-3330, 2011. [21] H. Tomozawa, Y. Saida, Y. Ikenoue, F. Murai, Y. Suzuki, T. Tawa, and Y. Ohta, J. Photopolym. Sci. Technol., Vol. 9, No. 4, pp. 707, 1996. [22] F. C. Chen, W. K. Huang, C. J. Ko, “Self-Organization of Microlens Arrays Caused by the Spin-Coating-Assisted Hydrophobic Effect”, IEEE Photonics Technol. Lett., Vol. 18, pp. 2454-2456, 2006. [23] 簡韻珊,「鎳質噴嘴片應用於微型霧化器之製作技術與研究」,國立中興 大學精密工程所,2014。
This study aims to investigate the morphology of a dual-curvature with dual-focus microlens array by two different lithography processes. Firstly, a diffuser lithography to fabricate the bottom of the lens was used (the use of diffusion layer would increase the size of the bottom lens for 20%), then deposited a copper for upper layer. Secondly, the upper column-like microlens through lithography process and calculated the volume of the column and sphere on the upper photoresist by thermal reflow. The diameter of bottom mask had been designed by 100μm and 120μm and arranged with the upper mask which diameter were 75μm and 90μm. The bottom microlens produced were JSR-126N, a negative photoresist because of its high melting point so that the upper layer fabrication which were AZ-4620 would not affect the morphology of the bottom layer. The result showed that the reduction of the upper photoresist volume were 18.44% and 16.9% respectively as the column turned into sphere.

本研究探討將兩種黃光微影技術製作出一個雙層雙焦點的微透鏡觀並觀察關係,首先第一步驟使用擴散微影法製作出下層透鏡(擴散片會使下層透鏡底徑變大約20%),第二步驟沉積銅金屬方便上層對位使用,第三步驟以黃光微影製作出上層圓柱形貌,第四步驟以熱熔回流(Thermal reflow)觀察上層光阻的形貌變化並計算出圓柱與圓球體積關係。設計光罩下層直徑100μm、120μm上層直徑75μm、90μm搭配,材料選用JSR-126N負光阻製作出下層微透鏡,由於下層JSR-126N有極高的熔點,因此在上層使用AZ-4620熱熔時不會影響下層微透鏡的形貌,結果計算顯示上層在熱熔時光阻圓柱變為光阻圓球時體積減少量分別為18.4%與16.9%。推導出上層熱熔前後數學幾何關係式得知熱熔前後體積變化,並且可利用造鏡者公式將雙層雙曲率微透鏡分為兩部分進行焦點計算以此,便可設計出所需要的焦點分佈。
Rights: 不同意授權瀏覽/列印電子全文服務
Appears in Collections:精密工程研究所

Files in This Item:
File SizeFormat Existing users please Login
nchu-104-7102067012-1.pdf2.13 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.