Please use this identifier to cite or link to this item:
標題: 以光場相機拍攝人物影像之臉部擷取
Face Segmentation In Portrait Images by Light Field Camera
作者: Wei-Hao Huang
關鍵字: Face segmentation;skin-tone segmentation;light field camera;shape from focus;sharpness index;connected component labeling;人臉擷取;膚色分割;光場相機;對焦成形法;銳利度運算子;連通元件標記法
引用: [1] Wikipedia, ”數位相機”,數位相機。 [2] 2014奧斯卡:最強明星陣容自拍照創 2014年3月3日第86 屆Oscar 頒獎禮在 Hollywood 舉行,。 [3] R. Ng, M. Levoy, M. Bredif, G. Duval, M. Horowitz and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Computer Science Technical Report, Stanford University, Stanford, CA, Feb. 2005. [4] R. Alexandre, Light Field Camera For Fundus Photography, U.S. Patent 0010260 A1., 2013. [5] D. Chai, “Face segmentation using skin-color map in videophone applications”, IEEE Transactions on Circuits and Systems for Video Technology, vol. 9, no. 4, June 1999. [6] R.-L. Hsu, M. Abdel-Mottaleb, and A. K. Jain, “Face detection in color images,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 24, no. 5, 2002. [7] S. McKenna, S. Gong, and Y. Raja, “Modelling facial colour and identity with Gaussian mixtures,” Pattern Recognition, vol. 31, no. 12, pp. 1883-1892, 1998. [8] Q. B. Sun, W. M. Huang, and J. K. Wu, “Face detection based on color and local symmetry information,” Proc. 3rd Int. Conf. Automatic Face and Gesture Recognition, pp. 130-135, 1998. [9] J. Sobottka and I. Pitas, “Segmentation and tracking of faces in color images,” Proc. 2nd Int. Conf. Automatic Face and Gesture Recognition, pp. 236-241, 1996. [10] D. Chai and K.N. Ngan, “Locating facial region of a head-and-shoulders color image,” Proc. 3rd Int. Conf. Automatic Face and Gesture Recognition, pp. 124-129. 1998. [11] P. Sinha, “Object recognition via image invariants: A case study,” Investigative Ophthalmology and Visual Science, vol. 35, no. 4, pp. 1735-1740, 1994. [12] S. Kawato and J. Ohya, “Two-step approach for real-time eye tracking with a new filtering technique,” IEEE Int. Conf. on Systems, Man & Cybernetics, pp. 1366-1371, 2000. [13] T. Agui, Y. Kokubo, H. Nagashashi, and T. Nagao, “Extraction of face recognition from monochromatic photographs using neural networks,” Proc. 2nd Int. Conf. Automation, Robotics, and Computer Vision, vol. 1, pp. 18.8.1-18.8.5, 1992. [14] 林榮城,自動化人臉偵測與特徵擷取系統,碩士論文,中原大學資訊 工程學系,2006。 [15] 微軟Kinect 介紹,T客幫2010年7月6日,。 [16] 台灣WIKI, ”立體攝影”,立體攝影。 [17] HTC M8 手機上市 2014年3月25日,。 [18] 立體相機第二代:富士 FinePix REAL 3D W3 發表 2010年8月17日,。 [19] 彭顗霖,遺失物偵測且具回報能力之視訊監控系統,碩士論文,中央 大學資訊工程學系,2009。 [20] K. Nayar and Y. Nakagawa, “Shape from focus” , IEEE Trans. Pattern Analysis And Machine Intelligence, Vol. 16, No.8, Aug. 1994. [21] G. Ligthart and F. C.A. Groen, “A comparion of different autofocus algorithms”, IEEE Proc. Int. Conf. Pattern Recognition, 1982. [22] 陳柏亘,基於光場相機之2D至3D轉換技術,碩士論文,國立中興大 學電機系,2013。 [23] 李建興,“即時人臉偵測與辨識”,技術期刊,Vol. 24,No.2,民國九十八 年。 [24] N. Otsu, “A thresholding selection method from gray-level histograms,” IEEE Trans. System Man Cybernetics, vol. 9, pp. 62-69, 1979. [25] 蘇俊欽,以Shape-from-Focus (SFF)和Depth-from-Focus (DFF)為基礎 之三次元量測系統,碩士論文,國立清華大學動力機械工程學系, 2003。 [26] 林彥廷,應用影像合成技術達到影像模糊補償,碩士論文,國立中興 大學電機系,2008。 [27] 繆紹綱,數位影像處理 (原著Gonzalez Woods, Digital Image Processing 2/e),普林斯頓國際有限公司,2003年8月。


Digital Cameras become more popular in recent years, and portrait photography is one of their major applications. Due to its limitation of focusing on a single point and the capability of identifying only clearly focused faces, the digital camera can hardly identify all faces in the image. The light field camera, presented by the Lytro-
company in 2012, has the capability of focusing on any point in an image. Since it has no face segmentation function yet, this research tries to use its special capability to enhance the face segmentation in the images.
In our method, first a number of images focused on different faces are taken, using the capability of focusing on any point in an image taken by the light field camera.
Then the images are transformed into binary images by thresholding according to the skin tone of the faces. The connected component labeling operation is used to find all the possible faces in the images. To get the relative depth information between the faces in the image, an experiment is conducted to measure the value of the thresholds of shape from focus and sharpness index ,which are used to assist to evaluate the right position of faces.
The experimental results show that our method can extract all the possible faces in the images, which can be used to adjust the focus of the light field camera or for the further face recognition task.
Rights: 同意授權瀏覽/列印電子全文服務,2015-10-21起公開。
Appears in Collections:通訊工程研究所

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-103-7099093005-1.pdf2.97 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.