Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributorHon-Son Donen_US
dc.contributor.authorWei-Hao Huangen_US
dc.identifier.citation[1] Wikipedia, ”數位相機”,數位相機。 [2] 2014奧斯卡:最強明星陣容自拍照創 2014年3月3日第86 屆Oscar 頒獎禮在 Hollywood 舉行,。 [3] R. Ng, M. Levoy, M. Bredif, G. Duval, M. Horowitz and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Computer Science Technical Report, Stanford University, Stanford, CA, Feb. 2005. [4] R. Alexandre, Light Field Camera For Fundus Photography, U.S. Patent 0010260 A1., 2013. [5] D. Chai, “Face segmentation using skin-color map in videophone applications”, IEEE Transactions on Circuits and Systems for Video Technology, vol. 9, no. 4, June 1999. [6] R.-L. Hsu, M. Abdel-Mottaleb, and A. K. Jain, “Face detection in color images,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 24, no. 5, 2002. [7] S. McKenna, S. Gong, and Y. Raja, “Modelling facial colour and identity with Gaussian mixtures,” Pattern Recognition, vol. 31, no. 12, pp. 1883-1892, 1998. [8] Q. B. Sun, W. M. Huang, and J. K. Wu, “Face detection based on color and local symmetry information,” Proc. 3rd Int. Conf. Automatic Face and Gesture Recognition, pp. 130-135, 1998. [9] J. Sobottka and I. Pitas, “Segmentation and tracking of faces in color images,” Proc. 2nd Int. Conf. Automatic Face and Gesture Recognition, pp. 236-241, 1996. [10] D. Chai and K.N. Ngan, “Locating facial region of a head-and-shoulders color image,” Proc. 3rd Int. Conf. Automatic Face and Gesture Recognition, pp. 124-129. 1998. [11] P. Sinha, “Object recognition via image invariants: A case study,” Investigative Ophthalmology and Visual Science, vol. 35, no. 4, pp. 1735-1740, 1994. [12] S. Kawato and J. Ohya, “Two-step approach for real-time eye tracking with a new filtering technique,” IEEE Int. Conf. on Systems, Man & Cybernetics, pp. 1366-1371, 2000. [13] T. Agui, Y. Kokubo, H. Nagashashi, and T. Nagao, “Extraction of face recognition from monochromatic photographs using neural networks,” Proc. 2nd Int. Conf. Automation, Robotics, and Computer Vision, vol. 1, pp. 18.8.1-18.8.5, 1992. [14] 林榮城,自動化人臉偵測與特徵擷取系統,碩士論文,中原大學資訊 工程學系,2006。 [15] 微軟Kinect 介紹,T客幫2010年7月6日,。 [16] 台灣WIKI, ”立體攝影”,立體攝影。 [17] HTC M8 手機上市 2014年3月25日,。 [18] 立體相機第二代:富士 FinePix REAL 3D W3 發表 2010年8月17日,。 [19] 彭顗霖,遺失物偵測且具回報能力之視訊監控系統,碩士論文,中央 大學資訊工程學系,2009。 [20] K. Nayar and Y. Nakagawa, “Shape from focus” , IEEE Trans. Pattern Analysis And Machine Intelligence, Vol. 16, No.8, Aug. 1994. [21] G. Ligthart and F. C.A. Groen, “A comparion of different autofocus algorithms”, IEEE Proc. Int. Conf. Pattern Recognition, 1982. [22] 陳柏亘,基於光場相機之2D至3D轉換技術,碩士論文,國立中興大 學電機系,2013。 [23] 李建興,“即時人臉偵測與辨識”,技術期刊,Vol. 24,No.2,民國九十八 年。 [24] N. Otsu, “A thresholding selection method from gray-level histograms,” IEEE Trans. System Man Cybernetics, vol. 9, pp. 62-69, 1979. [25] 蘇俊欽,以Shape-from-Focus (SFF)和Depth-from-Focus (DFF)為基礎 之三次元量測系統,碩士論文,國立清華大學動力機械工程學系, 2003。 [26] 林彥廷,應用影像合成技術達到影像模糊補償,碩士論文,國立中興 大學電機系,2008。 [27] 繆紹綱,數位影像處理 (原著Gonzalez Woods, Digital Image Processing 2/e),普林斯頓國際有限公司,2003年8月。zh_TW
dc.description.abstract近年來數位相機逐漸普及,而人物拍攝是其主要的用途之一,但受限於數位相機本身單點對焦和僅能辨識對焦清晰的人臉,無法在拍攝人像時辨識出所有的人臉。光場相機是Lytro公司於2012年所發表的,此相機有可在任意點對焦的特性,但沒有辨識人臉影像的功能,所以本研究嘗試運用其特性來擷取出光場影像中所有的人臉,以解決數位相機無法辨識所有人臉的問題。 我們提出的方法中,首先利用光場相機可在任點對焦的特性,手動取得多張不同對焦人臉位置點的影像。在光場影像執行膚色分割得到二值化的結果,再進行連通元件標籤法將所有可能的人臉位置標示。為取得人臉之間的相對深度資訊,我們設計深度實驗攝影,找出對焦成形法和銳利度運算子(平均梯度)的閥值範圍,來輔助判斷人臉的位置。 實驗結果證實本文的演算法可以在光場影像中有效擷取出影像中所有的人臉,它們可以應用在光場相機對人臉進行對焦或進一步做人臉辨識。zh_TW
dc.description.abstractDigital Cameras become more popular in recent years, and portrait photography is one of their major applications. Due to its limitation of focusing on a single point and the capability of identifying only clearly focused faces, the digital camera can hardly identify all faces in the image. The light field camera, presented by the Lytro- company in 2012, has the capability of focusing on any point in an image. Since it has no face segmentation function yet, this research tries to use its special capability to enhance the face segmentation in the images. In our method, first a number of images focused on different faces are taken, using the capability of focusing on any point in an image taken by the light field camera. Then the images are transformed into binary images by thresholding according to the skin tone of the faces. The connected component labeling operation is used to find all the possible faces in the images. To get the relative depth information between the faces in the image, an experiment is conducted to measure the value of the thresholds of shape from focus and sharpness index ,which are used to assist to evaluate the right position of faces. The experimental results show that our method can extract all the possible faces in the images, which can be used to adjust the focus of the light field camera or for the further face recognition task.en_US
dc.description.tableofcontents致謝 i 摘要 ii Abstract iii 目次 iv 圖目次 vi 表目次 viii 第一章緒論 1 1.1研究背景與發展動機 1 1.2人臉偵測相關研究 3 1.3 擷取深度的技術概要 5 1.4 方法介紹 9 1.5章節介紹 10 第二章原理介紹 11 2.1光場相機原理 11 2.1.1 微透鏡f-Number的匹配 12 2.1.2 影像分析與合成方程式 14 2.1.3 數位重新對焦 18 2.2 色彩空間轉換 20 2.3 影像的二值化 20 2.4 連通元件標記法 21 2.5 深度估算原理 23 2.6 影像清晰度量測 26 第三章 研究原理和方法 29 3.1簡介 29 3.2人臉偵測系統 31 3.3連通標記中的循序法 32 3.4 深度和清晰度的閥值測量方法 32 第四章 操作介面與實驗結果 37 4.1使用者介面 37 4.2實驗結果和討論 43 第五章結論 50 參考文獻 51zh_TW
dc.subjectFace segmentationen_US
dc.subjectskin-tone segmentationen_US
dc.subjectlight field cameraen_US
dc.subjectshape from focusen_US
dc.subjectsharpness indexen_US
dc.subjectconnected component labelingen_US
dc.titleFace Segmentation In Portrait Images by Light Field Cameraen_US
dc.typeThesis and Dissertationen_US
item.openairetypeThesis and Dissertation-
item.fulltextwith fulltext-
Appears in Collections:通訊工程研究所
Files in This Item:
File Description SizeFormat Existing users please Login
nchu-103-7099093005-1.pdf2.97 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show simple item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.