Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91856
標題: 晶種層表面處理效應對水熱法成長氧化鋅奈米柱陣列微結構及導電特性影響
Surface treatment effect of seed layer on the microstructure and electrical conduction properties of hydrothermally synthesized ZnO nanorod arrays
作者: Kai-Zhi Kan
甘鎧誌
關鍵字: 氧化鋅;奈米柱陣列;表面處理;X光繞射;SEM分析;光致螢光光譜;變溫電阻量測;ZnO;nanorod array;surface treatment;X-ray diffraction;Scanning electron microscope;Photoluminescence spectrum;R-T
引用: [1] F. K. Shan, B. I. Kim, G. X. Liu, Z. F. Liu, J. Y. Sohn, W. J. Lee, B. C. Shin, and Y. S. Yu, “Blueshift of near band edge emission in Mg doped ZnO thin films and aging”, Journal of Applied Physics 95, 4772 (2004). [2] 劉成有,“AxZn1-xO (A:Mg, Cd) 薄膜材料與非線性光學性質”,博士論文(2011),東北師範大學物理化學所。 [3] U. Ozgur, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.J. Cho and H. Morkocd, ”A comprehensive review of ZnO materials and devices”, Journal of Applied Physics 98,041301 (2005). [4] 王貞雲, “以低溫水溶液法合成氧化鋅奈米線之研究”,碩士論文(2007),國立台北科技大學材料科學與工程研究所。 [5] P. Y. Yu and M. Cardona, 2005 Fundamentals of Semiconductors 3rd edn (Berlin: Springer). [6] N. H. Nickel and E. Terukov, “Zinc Oxide-A Material for Micro- and Optoelectronic Applications”, Nato Science Series II: Mathematics, Physics and Chemistry 194 (2005). [7] C. Jagadish and S. J. Pearton, (ed) 2006 Zinc Oxide Bulk, Thin Films, and Nanostructures (New York: Elsevier). [8] D. G. Baik, S. M. Cho, “Application of sol-gel derived films for ZnO/n-Si junction solar cells”, Thin Solid Films 354, 227 (1999). [9] 郭瑞,“ZnMgO薄膜與ZnMgO/ZnO異質結的製備及其性能研究”,碩士論文(2010),北京化工大學材料科學與工程研究所。 [10] X. D. Wang, J. H. Song, J. Liu, Z. L. Wang, ”Direct-Current Nanogenerator Driven by Ultrasonic Waves”, Science 316, 102 (2007). [11] Z. Lin. Wang and J. H. Song, “Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays”, Science 312, 242 (2006). [12] Y. Qin, X. D. Wang, Z. L. Wang, “Microfibre–nanowire hybrid structure for energy scavenging”, Nature 451, 809 (2008). [13] N. Fujimura, T. Nishihara, S. Goto, J. Xu, and T. Ito, “Control of preferred orientation for ZnOx films:control of self-texture”, Journal of Crystal Growth 130, 269 (1993). [14] H. M. Cheng, K. F. Lin, H. C. Hsu, C. J. Lin, L. J. Lin, and W. F. Hsieh, “Enhanced resonant Raman scattering and electron-phonon coupling from self-assemb led secondary ZnO nanoparticles”, Journal of Physical Chenmistry B 109, 18385 (2005). [15] H. Li, K. F. Luo, M. L. Xia, P. W. Wang, ” Synthesis and optical properties of Pr3+-doped ZnO quantum dots”, Journal of Non-Crystalline Solids 383, 176 (2014). [16] Q. L. Liao, Y. Yang, L. S. Xia, J. J. Qi, Y. Zhang, Y. H. Huang, and Z. Qin, ” High intensity, plasma-induced emission from large area ZnO nanorod array cathodes”, Physics of Plasmas 15, 114505 (2008). [17] Z. W. Pan, Z. R. Dai, Z. L. Wang, ”Nanobelts of Semiconducting Oxides”, Science 291, 1947 (2001). [18] Y. W. Heoa, D. P. Nortona, L. C. Tiena, Y. Kwona, B. S. Kangb, F. Renb, S. J. Peartona, J. R. LaRoche, ”ZnO nanowire growth and devices”, Materials Science and Engineering: R: Reports 47, 1 (2004). [19] J. Y. Lao, J. Y. Huang, D. Z. Wang, and Z. F. Ren, ”ZnO Nanobridges and Nanonails”, Nano Letters 3 (2), 235 (2003). [20] C. C. Lin, S. L. Young, C. Y. Kung , M. C. Jhang, C. H. Lin, M. C. Kao, H. Z. Chen, C. R. Ou, C. C. Cheng, H. H. Lin, ”Effect of Fe doping on the microstructure and electrical properties of transparent ZnO nanocrystalline films”, Thin Solid Films 529, 479 (2013). [21] 羅聖全,”研發奈米科技的基本工具之一電子顯微鏡介紹SEM”,小奈米大世界,2003。 [22] 資料引用自逢甲大學共同貴重儀器中心,網址:http://www.pisc.fcu.edu.tw/?lnk=instrument_detail&iid=12。 [23] N. F. Mott, ”Electrons in disordered structures”, Advances in Physics 50, 865 (2001). [24] P. A. Walley, ”Electrical conduction in amorphous silicon and germanium”, Thin Solid Films 2, 327 (1968). [25] J. D. Hwang , Y. H. Chen, “Effects of pre-annealing conditions on the characteristics of ZnO nanorods and ZnO/p-Si heterojunction diodes grown through hydrothermal method”, Thin Solid Films 520 ,5294 (2012). [26] H. S. Koo, C. C. Lin, Y. J. Chen, C. H. Peng, and M. Chen, ”Effect of the H2 plasma treatment of a seed layer on the synthesis of ZnO nanorods using a microwave hydrothermal method”, Japanese Journal of Applied Physics 53, 04EH12 (2014) [27] L. L. Yang, Q. X. Zhao, M. Willander, J. H. Yang, ”Effective way to control the size of well-aligned ZnO nanorod arrays with two-step chemical bath deposition”,Journal of Crystal Growth 311, 1046 (2009). [28] J. S. Huang,C. F. Lin, ”Controlled Growth of Zinc Oxide Nanorod Array in Aqueous Solution by Zinc Oxide Sol-Gel Thin Film in Relation to Growth Rate and Optical Property”, Nanotechnology, 2008. NANO ''08. 8th IEEE Conference on, 135 (2008). [29] T. Ma, M. Guo, M. Zhang, Y. J. Zhang and X. D. Wang, ”Density-controlled hydrothermal growth of well-aligned ZnO nanorod arrays”, Nanotechnology 18, 035605 (2007). [30] P. S. Xu, Y. M. Sun, C. S. Shi, F. Q. Xu, H. B. Pan, ”The electronic structure and spectral properties of ZnO and its defects”, Nucl. Instrum. Methods Phys. Res. B 199, 286 (2003). [31] D. Zhao, Y. Liu, D. Shen, Y. Lu, J. Zhang, and X. Fan, “Structural and optical properties of MgxZn1-xO thin films prepared by the sol-gel method”, Journal of Crystal Growth 234, 427 (2002). [32] R. L. Orimi, “Investigation of the effect of annealing on the photoluminescence properties of ZnO nanoparticles, synthesized at low temperature”, Optical Materials 35, 657 (2013). [33] H. Maki, T. Ikoma, I. Sakaguchi, N. Ohashi, H. Haneda, J. Tanaka, N. Ichinose, ” Control of surface morphology of ZnO by hydrochloric acid (000 ) etching”, Thin Solid Films 411, 91 (2002). [34] 江美菊,“相關係數面面觀”,碩士論文(2013),政治大學應用數學系。 [35] O. Maksimov, “Recent advances and novel approaches of p-type doping of zinc oxide”, Reviews on Advanced Materials Science 24, 26 (2010). [36] S. P. Chiu, Y. H. Lin and J. J. Lin, “Electrical conduction mechanisms in natively doped ZnO nanowires”, Nanotechnology 20, 015203 (2009). [37] P. F. Cai, J. B. You, X. W. Zhang, J. J. Dong, X. L. Yang, Z. G. Yin, and N. F. Chen, “Enhancement of conductivity and transmittance of ZnO films by post hydrogen plasma treatment”, Journal of Applied Physics 105, 083713 (2009). [38] R. Kumar, N. Khare, “Temperature dependence of conduction mechanism of ZnO and Co-doped ZnO thin films,” Thin Solid Films 516, 1302 (2008). [39] G. Paasch, T. Lindner, S. Scheinert, “Variable range hopping as possible origin of a universal relation between conductivity and mobility in disordered organic semiconductors,” Synth. Met. 132, 97 (2002).
摘要: 
本實驗利用溶膠凝膠法在矽基板上塗佈氧化鋅薄膜晶種層。將製備好之氧化鋅晶種層對其酸、鹼及氫(電漿)化處理後,再利用水熱法成長氧化鋅奈米柱陣列。研究探討在不同處理後,對氧化鋅晶種層及其後續成長奈米柱陣列的微結構和導電特性的影響。
X光繞射分析儀的量測部分,顯示酸、鹼處理的晶種層所成長的奈米柱有較佳之結晶品質,但氫化處理後所成長之奈米柱反而有較差的結晶品質。掃描式電子顯微鏡觀察結果顯示晶種層表面晶粒經過酸、鹼和氫化處理後變小,使其後續成長的奈米柱直徑變小,且長度增加及密度降低。
光致螢光光譜量測部分,晶種層酸和鹼處理所成長奈米柱的缺陷有減少的趨勢,由此可知晶種層酸和鹼處理可有效減少奈米柱成長過程產生的缺陷。但氫化處理後成長的奈米柱展現截然不同的情況,隨著氫電漿功率增加其成長之奈米柱的紫外光放射峰強度降低且以氧空缺為主的缺陷大量增加。
電性量測部分,藉由低溫到高溫範圍(20K~300T)的電阻隨溫度變化關係,探討晶種層表面處理後所成長的氧化鋅奈米柱的載子傳導機制。接近室溫時載子的傳導機制皆為熱活化能形式(activation type),在低溫時,載子的傳導機制皆由可變範圍躍遷(VRH)所主導。晶種層表面不同處理使其後續成長之奈米柱電性的活化能有增加的情況。

In this work, the ZnO seed layer were deposited on Si substrates by the sol-gel spin coating technique. The ZnO nanorod arrays have been hydrothermally grown on the ZnO seed layer with surface treatment of hydrochloric acid etching, sodium hydroxide etching and hydrogen plasma passivation, respectively. The purpose of the study is to investigate the influence of characters of seed layer on the ZnO nanorod growth. The influence of preparing conditions on the ZnO nanorods was systematically studied by X-ray diffraction, scanning electron microscopy, photoluminescence spectroscopy and R-T.
On the microstructure, the results shows the ZnO nanorods grown on seed layer with hydrochloric acid etching and sodium hydroxide etching has a higher crystallinity. The grain size of the ZnO film were decreased for the seed films treated chemically by surface treatment. It is observed that ZnO nanorod’s length increase and the diameter decrease for the film with surface treatments. Especially, nanorods become sparse for seed layer pretreated by hydrogen plasma treatment.
It is also observed by that defect density reduced for the samples with seed layer pretreated with hydrochloric acid and sodium hydroxide treatments. However, the defects increased for the samples with hydrogen plasma treatment and the defect density increased with plasma power.
The nanorods were measured over a wide range of temperature from 300 down to 20 K. In the high temperature range, the temperature-dependent resistivity shows the thermal activation conduction. In the low temperature range, the temperature-dependent resistivity indicates the behavior of Mott VRH. The activation energy of nanorods which grown on seed layer wih the different surface treatments were increase.
URI: http://hdl.handle.net/11455/91856
Rights: 同意授權瀏覽/列印電子全文服務,2016-07-16起公開。
Appears in Collections:光電工程研究所

Files in This Item:
File SizeFormat Existing users please Login
nchu-103-7101094014-1.pdf2.19 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.