Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91867
標題: 開發具高穿透、光自潔功能之光學薄膜
Investigation of the nanocoating with high transmittance and self-cleaning
作者: Yu-Xuan Huang
黃宇玄
關鍵字: 抗反射;自潔性;親水性;二氧化鈦;二氧化矽;微波水熱法;薄膜太陽能電池;Anti-reflecting;self-cleaning;hydrophilic;titanium dioxide;silicon dioxide;microwave hydrothermal synthesis;thin film solar cells.
引用: [1] National Renewable Energy Laboratory, “Best research cell efficiencies”, (2013) [2] Martin A. Green, “Solar Cells Operating Principles, Technology and System Applications”, (1992), University of New South Wales published. [3] 黃惠良、蕭錫鍊、周明奇、林堅楊、江雨龍、曾百亨、李威儀、李世昌、林唯芳,太陽電池,五南圖書出版,2008年 [4] 李正中,薄膜光學與鍍膜技術,藝軒圖書出版,1999年 [5] A. Fujishima, K. Honda, “Electrochemical photolysis of water at semiconductor electrode”, Nature Vol. 37(1972) pp.238 [6] A. L. Linsebigler, “Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results.” Chem. Rev. Vol. 95(1995) pp.735~758 [7] N. Sakai, R. Wang, A. Fujishima, T. Watanabe, K. Hanshimoto, “Effect of Ultrasonic Treatment on Highly Hydrophilic TiO2 Surfaces”, Langmuir Vol. 14(1998) pp.5918~5920 [8] L. F. Wang, T. J. Chen, “Optimum matching of single-layer-anti-reflective coating with semiconductor solar cells”, Taiyangneng Xuebao/Acta Energiae Solaris Sinica Vol. 10 (1989) pp.110 [9] J. Zhao, M. A. Green, “Optimized Antireflection Coatings for High-Efficiency Silicon Solar Cells”, IEEE TRANSACTIONS ON ELECTRON EVICES. VOL.38, NO.8, AUGUST (1991) pp.1925 [10] D. J. AIKEN, “High performance anti-reflection coatings for broadband multi-junction solar cell”, Solar Energy Materials and Solar Cells Vol. 64 (2000) pp.393 [11] B. S. Richards, “Single-material TiO2 double-layer antireflection coatings”, Solar Energy Materials and Solar Cells Vol. 79 (2003) pp.369 [12] M. Neander, F. Gromball, D. Neumann, N. P. Harder, W. Andreas Nositschka, “ANTI-REFLECTIVE-COATING TUNED FOR HIGHER SOLAR MODULE VOLTAGE”, Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference. [13] J. Y. Chen, K. W. Sun, “Growth of vertically aligned ZnO nanorod arrays as antireflection layer on silicon solar cells”, Solar Energy Materials and Solar Cells Vol. 94 (2010) pp.930 [14] M. Nakamura, M. Kobayashi, N. Kuzuya, T. Komatsu, T. Mochizuka, “Hydrophilic property of SiO2/TiO2 double layer films”, Thin Solid Films Vol. 502(2006), pp.121~124 [15] M. J. Park, K. S. Lee, J. B. Kang, C. S. Mun, “Super hydrophilic properties of SiO2-TiO2 thin film prepared by sol-gel method”, Korean Journal of Materials Research 17 (3) (2007), pp. 125~131 [16] Y. Y. Liu, L. Q. Qian, C. Guo, X. Jia, J. W. Wang, W. H. Tang, “Natural superhydrophilic TiO2/SiO2 composite thin films deposited by radio frequency magnetron sputtering”, Journal of Alloys and Compounds 479 (1-2) (2009), pp. 532~535 [17] H. S. Kim, J. F. Yang, T. Sekino, S. W. Lee, “Effective of SiO2 addition on the self-cleaning and photocatalytic properties of TiO2 films by sol-gel process”, Materials Science Forum Vol.620~622 (2009), pp. 679~682 [18] F. L. Galeener, “Band limits and the vibrational spectra of tetrahedral glasses”, Phys. Rev. B 19 (8) (1979), pp.4292~4297 [19] R. M. Almeida, C. G. Pantano, “Stuctural investigation of silica gel films by infrared spectroscopy”, J Appl Phys. 68 (1990) , pp. 4225~4232 [20] S. Y. Lien, Y. C. Chang, Y. S. Cho, Y. Y. Chang and S. J. Lee,” Deposition and Characterization of High Efficiency Silicon Thin Film Solar Cells by HF-PECVD and OES Technology”, IEEE Transactions on Electron Devices. Vol. 59 (2012) pp. 1245-1254
摘要: 
本論文係使用微波水熱法製備奈米二氧化鈦溶膠,並且與奈米二氧化矽溶膠混和調配成不同二氧化矽-二氧化鈦比例之複合溶膠,再以旋轉塗佈法鍍膜於玻璃基板上並利用可調變溫度之退火過程形成一兼具抗反射以及光自潔效能之多功能光學薄膜。
研究結果顯示其光學穿透率不僅僅與空氣與玻璃介面的折射率匹配相關,當薄膜之二氧化矽/二氧化鈦之比例為5時且退火溫度為500°C可具有最高穿透率94.41%,較原先玻璃基板之穿透率提昇3.92%。而當退火溫度高於400°C時,所有不同比例之二氧化矽-二氧化鈦薄膜在未照光條件下,仍具有顯著的親水性。
另外,實際應用此二氧化矽-二氧化鈦之光學薄膜於疊層式非晶矽/微晶矽薄膜型太陽電池時,相對效率可提昇0.52%。而在經過兩個月的室外環境測試後,經過計算可知此光學薄膜可有效避免1.7%因環境中塵埃與粒子所造成的效率衰退(相對值)。

In this thesis, titanium dioxide (TiO2) sol is prepared by microwave hydrothemal synthesis, and then mixed with silicon dioxide (SiO2) sol with different SiO2/TiO2 ratios to be sol-gel spin-coated on glass as antirereflecting and self-cleaning bifunctional layer by different annealing temperature.
The results show that the optimum transmittance of the composite films is not determined only by refractive index matching at air/glass interface. Adding TiO2 into SiO2 with SiO2/TiO2=5 and annealing with 500°C leads to highest transmittance of 94.41% which is 3.92% higher than that of glass. When the annealing temperature is higher then 400°C, all the SiO2-TiO2 films show naturally remarkable hydrophilicity even without UV illumination.
Furthermore, the optimized SiO2-TiO2 film applied to a-Si:H/μc-Si tandem solar cells gives rise to an increase of 0.52% in conversion efficiency. After 2-month outdoor testing, it is evaluated that cells with the SiO2-TiO2 film can avoid 1.7% degradation loss (in relative value) caused by environmental dust/ dirt.
URI: http://hdl.handle.net/11455/91867
Rights: 不同意授權瀏覽/列印電子全文服務
Appears in Collections:光電工程研究所

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-103-7100094006-1.pdf5.7 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.