Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91896
標題: 以幾丁聚醣製備具奈微米複合結構之神經導管
A novel chitosan nerve conduit with micro and nano hybrid patterns
作者: 林穎廷
Ying-Ting Lin
關鍵字: 神經導管;幾丁聚醣;奈微米結構;nerve conduit;micro and nano hybrid patterns;chitosan
引用: [1] 楊志明, 組織工程: 九州圖書, 2005. [2] R. Vasita and D. S. Katti, 'Nanofibers and their applications in tissue engineering,' Int J Nanomedicine, vol. 1, pp. 15-30, 2006. [3] 左明雪, 細胞和分子神經生物學: 藝軒圖書發行, 2003. [4] 壽天德, 神經生物學: 九州圖書, 2003. [5] 洪純隆, 神經外科學: 洪葉文化, 1998. [6] H. Seddon, Surgical disorders of the peripheral nerves: Churchill Livingstone, 1972. [7] S. Sunderland, 'A classification of peripheral nerve injuries producing loss of function,' Brain, vol. 74, pp. 491-516, Dec 1951. [8] N. Nicoli Aldini, G. Perego, G. D. Cella, M. C. Maltarello, M. Fini, M. Rocca, and R. Giardino, 'Effectiveness of a bioabsorbable conduit in the repair of peripheral nerves,' Biomaterials, vol. 17, pp. 959-62, 1996. [9] J. M. Rosen, H. N. Pham, G. Abraham, L. Harold, and V. R. Hentz, 'Artificial nerve graft compared to autograft in a rat model,' J Rehabil Res Dev, vol. 26, pp. 1-14, 1989. [10] D. R. Jung, R. Kapur, T. Adams, K. A. Giuliano, M. Mrksich, H. G. Craighead, and D. L. Taylor, 'Topographical and physicochemical modification of material surface to enable patterning of living cells,' Crit Rev Biotechnol, vol. 21, pp. 111-54, 2001. [11] J. Mohammad, J. Shenaq, E. Rabinovsky, and S. Shenaq, 'Modulation of peripheral nerve regeneration: a tissue-engineering approach. The role of amnion tube nerve conduit across a 1-centimeter nerve gap,' Plast Reconstr Surg, vol. 105, pp. 660-6, 2000. [12] G. Lundborg, B. Rosen, S. O. Abrahamson, L. Dahlin, and N. Danielsen, 'Tubular repair of the median nerve in the human forearm. Preliminary findings,' J Hand Surg Br, vol. 19, pp. 273-6, 1994. [13] J.-C. Jen, 'Sciatic Nerve Repair by Microgrooved Nerve Conduits Made of Chitosan-gold Nanocomposites', 2007. [14] 陳榮輝, '幾丁質、幾丁聚醣的生產製造、檢測與應用,' 科學發展月刊, vol. 29, pp. 776-787, 2001. [15] S. Itoh, I. Yamaguchi, M. Suzuki, S. Ichinose, K. Takakuda, H. Kobayashi, K. Shinomiya, and J. Tanaka, 'Hydroxyapatite-coated tendon chitosan tubes with adsorbed laminin peptides facilitate nerve regeneration in vivo,' Brain Res, vol. 993, pp. 111-23, 2003. [16] I. Yamaguchi, S. Itoh, M. Suzuki, A. Osaka, and J. Tanaka, 'The chitosan prepared from crab tendons: II. The chitosan/apatite composites and their application to nerve regeneration,' Biomaterials, vol. 24, pp. 3285-92, 2003. [17] M. M. Stevens and J. H. George, 'Exploring and engineering the cell surface interface,' Science, vol. 310, pp. 1135-8, 2005. [18] C. Zhao, A. Tan, G. Pastorin, and H. K. Ho, 'Nanomaterial scaffolds for stem cell proliferation and differentiation in tissue engineering,' Biotechnol Adv, vol. 31, pp. 654-68, 2013. [19] T. Gustafson and L. Wolpert, 'Studies on the cellular basis of morphogenesis in the sea urchin embryo. Directed movements of primary mesenchyme cells in normal and vegetalized larvae,' Exp Cell Res, vol. 253, pp. 288-95, 1999. [20] G. J. Wang, Y. C. Lin, C. W. Li, C. C. Hsueh, S. H. Hsu, and H. S. Hung, 'Fabrication of orderly nanostructured PLGA scaffolds using anodic aluminum oxide templates,' Biomed Microdevices, vol. 11, pp. 843-50, 2009. [21] G. E. Park, M. A. Pattison, K. Park, and T. J. Webster, 'Accelerated chondrocyte functions on NaOH-treated PLGA scaffolds,' Biomaterials, vol. 26, pp. 3075-82, 2005. [22] T. J. Webster, Z. Tong, J. Liu, and M. Katherine Banks, 'Adhesion of Pseudomonas fluorescens onto nanophase materials,' Nanotechnology, vol. 16, pp. S449-57, 2005. [23] D. C. Miller, K. M. Haberstroh, and T. J. Webster, 'PLGA nanometer surface features manipulate fibronectin interactions for improved vascular cell adhesion,' J Biomed Mater Res A, vol. 81, pp. 678-84, 2007. [24] L. Xia, B. Feng, P. Wang, S. Ding, Z. Liu, J. Zhou, and R. Yu, 'In vitro and in vivo studies of surface-structured implants for bone formation,' Int J Nanomedicine, vol. 7, pp. 4873-81, 2012. [25] H.-A. Pan, Y.-C. Hung, C.-W. Su, S.-M. Tai, C.-H. Chen, F.-H. Ko, and G. Steve Huang, 'A Nanodot Array Modulates Cell Adhesion and Induces an Apoptosis-Like Abnormality in NIH-3T3 Cells,' Nanoscale Research Letters, vol. 4, pp. 903-912, 2009. [26] K. S. Park, K. J. Cha, I. B. Han, D. A. Shin, D. W. Cho, S. H. Lee, and D. S. Kim, 'Mass-producible Nano-featured Polystyrene Surfaces for Regulation the Differentiation of Human Adipose-derived Stem Cells,' Macromol Biosic, vol. 12, pp. 1480-1489, 2012. [27] K. Baranes, N. Chejanovsky, N. Alon, A. Sharoni, and O. Shefi, 'Topographic cues of nano-scale height direct neuronal growth pattern,' Biotechnol Bioeng, vol. 109, pp. 1791-7, 2012. [28] S. h. Hsu, C. Y. Chen, P. S. Lu, C. S. Lai, and C. J. Chen, 'Oriented Schwann cell growth on microgrooved surfaces,' Biotechnol Bioeng, vol. 92, pp. 579-588, 2005. [29] L. Yao, S. Wang, W. Cui, R. Sherlock, C. O’Connell, G. Damodaran, A. Gorman, A. Windebank, and A. Pandit, 'Effect of functionalized micropatterned PLGA on guided neurite growth,' Acta Biomater, vol. 5, pp. 580-588, 2009. [30] E. A. Bremus-Koebberling, S. Beckemper, B. Koch, and A. Gillner, 'Nano structures via laser interference patterning for guided cell growth of neuronal cells,' Journal of Laser Applications, vol. 24, p. 042013, 2012. [31] S. K. W. Dertinger, X. Jiang, Z. Li, V. N. Murthy, and G. M. Whitesides, 'Gradients of substrate-bound laminin orient axonal specification of neurons,' Proceedings of the National Academy of Sciences, vol. 99, pp. 12542-12547, 2002. [32] X. Jiang, D. A. Bruzewicz, A. P. Wong, M. Piel, and G. M. Whitesides, 'Directing cell migration with asymmetric micropatterns,' Proc Natl Acad Sci U S A, vol. 102, pp. 975-978, 2005. [33] X. Jiang, R. Ferrigno, M. Mrksich, and G. M. Whitesides, 'Electrochemical Desorption of Self-Assembled Monolayers Noninvasively Releases Patterned Cells from Geometrical Confinements,' Journal of the American Chemical Society, vol. 125, pp. 2366-2367, 2003. [34] Y. Sun, Y. Liu, W. Qu, and X. Jiang, 'Combining nanosurface chemistry and microfluidics for molecular analysis and cell biology,' Anal Chim Acta, vol. 650, pp. 98-105, 2009. [35] W. Liu, W. Zheng, B. Yuan, and X. Jiang, 'A micropatterned coculture system for axon guidance reveals that Slit promotes axon fasciculation and regulates the expression of L1CAM,' Integrative Biology, vol. 5, pp. 617-623, 2013. [36] N. R. Wilson, M. T. Ty, D. E. Ingber, M. Sur, and G. Liu, 'Synaptic Reorganization in Scaled Networks of Controlled Size,' The Journal of Neuroscience, vol. 27, pp. 13581-13589, 2007. [37] Y. Nam, B. C. Wheeler, and M. O. Heuschkel, 'Neural recording and stimulation of dissociated hippocampal cultures using microfabricated three-dimensional tip electrode array,' J Neurosci Methods, vol. 155, pp. 296-9, 2006. [38] Y. Sun, Z. Huang, K. Yang, W. Liu, Y. Xie, B. Yuan, W. Zhang, and X. Jiang, 'Self-organizing circuit assembly through spatiotemporally coordinated neuronal migration within geometric constraints,' PLoS One, vol. 6, p. e28156, 2011. [39] B. G. Chung, L. A. Flanagan, S. W. Rhee, P. H. Schwartz, A. P. Lee, E. S. Monuki, and N. L. Jeon, 'Human neural stem cell growth and differentiation in a gradient-generating microfluidic device,' Lab Chip, vol. 5, pp. 401-6, 2005. [40] S. W. Rhee, A. M. Taylor, C. H. Tu, D. H. Cribbs, C. W. Cotman, and N. L. Jeon, 'Patterned cell culture inside microfluidic devices,' Lab Chip, vol. 5, pp. 102-107, 2005. [41] T. Sun, N. Yu, L. K. Zhai, N. Li, C. Zhang, L. Zhou, Z. Huang, X. Y. Jiang, Y. Shen, and Z. Y. Chen, 'c-Jun NH2-terminal kinase (JNK)-interacting protein-3 (JIP3) regulates neuronal axon elongation in a kinesin- and JNK-dependent manner,' J Biol Chem, vol. 288, pp. 14531-43, 2013. [42] J. Xie, M. R. MacEwan, X. Li, S. E. Sakiyama-Elbert, and Y. Xia, 'Neurite Outgrowth on Nanofiber Scaffolds with Different Orders, Structures, and Surface Properties,' ACS Nano, vol. 3, pp. 1151-1159, 2009. [43] K. Kang, S.-E. Choi, H. S. Jang, W. K. Cho, Y. Nam, I. S. Choi, and J. S. Lee, 'In Vitro Developmental Acceleration of Hippocampal Neurons on Nanostructures of Self-Assembled Silica Beads in Filopodium-Size Ranges,' Angewandte Chemie International Edition, vol. 51, pp. 2855-2858, 2012. [44] Z. Huang and X. Jiang, 'Micro/nano-scale materials and structures for constructing neuronal networks and addressing neurons,' Journal of Materials Chemistry C, vol. 1, pp. 7652-7662, 2013. [45] Y. Xia and G. M. Whitesides, 'Soft Lithography,' Angewandte Chemie International Edition, vol. 37, pp. 550-575, 1998. [46] D. Qin, Y. Xia, and G. M. Whitesides, 'Soft lithography for micro- and nanoscale patterning,' Nat Protoc, vol. 5, pp. 491-502, 2010. [47] W.-W. Liu, Z.-L. Chen, and X.-Y. Jiang, 'Methods for Cell Micropatterning on Two-Dimensional Surfaces and Their Applications in Biology,' Chinese Journal of Analytical Chemistry, vol. 37, pp. 943-949, 2009. [48] C. S. Chen, X. Jiang, and G. M. Whitesides, 'Microengineering the Environment of Mammalian Cells in Culture,' MRS Bulletin, vol. 30, pp. 194-201, 2005. [49] B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, 'New approaches to nanofabrication: molding, printing, and other techniques,' Chem Rev, vol. 105, pp. 1171-96, 2005. [50] J. N. Lee, X. Jiang, D. Ryan, and G. M. Whitesides, 'Compatibility of mammalian cells on surfaces of poly(dimethylsiloxane),' Langmuir, vol. 20, pp. 11684-91, 2004. [51] M. R. Dusseiller, D. Schlaepfer, M. Koch, R. Kroschewski, and M. Textor, 'An inverted microcontact printing method on topographically structured polystyrene chips for arrayed micro-3-D culturing of single cells,' Biomaterials, vol. 26, pp. 5917-25, 2005. [52] A. M. Taylor, M. Blurton-Jones, S. W. Rhee, D. H. Cribbs, C. W. Cotman, and N. L. Jeon, 'A microfluidic culture platform for CNS axonal injury, regeneration and transport,' Nat Methods, vol. 2, pp. 599-605, 2005. [53] J. Xie, M. R. MacEwan, A. G. Schwartz, and Y. Xia, 'Electrospun nanofibers for neural tissue engineering,' Nanoscale, vol. 2, pp. 35-44, 2010. [54] J. Xie, S. M. Willerth, X. Li, M. R. Macewan, A. Rader, S. E. Sakiyama-Elbert, and Y. Xia, 'The differentiation of embryonic stem cells seeded on electrospun nanofibers into neural lineages,' Biomaterials, vol. 30, pp. 354-62, 2009. [55] Y. Zhu, A. Wang, W. Shen, S. Patel, R. Zhang, W. L. Young, and S. Li, 'Nanofibrous patches for spinal cord regeneration,' Advanced functional materials, vol. 20, pp. 1433-1440, 2010. [56] Y. Zhu, A. Wang, S. Patel, K. Kurpinski, E. Diao, X. Bao, G. Kwong, W. L. Young, and S. Li, 'Engineering bi-layer nanofibrous conduits for peripheral nerve regeneration,' Tissue Eng Part C Methods, vol. 17, pp. 705-15, 2011. [57] A. Salim, C. Son, and B. Ziaie, 'Selective nanofiber deposition via electrodynamic focusing,' Nanotechnology, vol. 19, p. 375303, 2008. [58] M. Li, Y.-Z. Long, D. Yang, J. Sun, H. Yin, Z. Zhao, W. Kong, X. Jiang, and Z. Fan, 'Fabrication of one dimensional superfine polymer fibers by double-spinning,' Journal of Materials Chemistry, vol. 21, pp. 13159-13162, 2011. [59] D. Yang, B. Lu, Y. Zhao, and X. Jiang, 'Fabrication of Aligned Fibrous Arrays by Magnetic Electrospinning,' Advanced Materials, vol. 19, pp. 3702-3706, 2007. [60] Y. Liu, Y. Sun, H. Yan, X. Liu, W. Zhang, Z. Wang, and X. Jiang, 'Electrospun Fiber Template for Replica Molding of Microtopographical Neural Growth Guidance,' Small, vol. 8, pp. 676-681, 2012. [61] J. Xie, W. Liu, M. R. MacEwan, Y. C. Yeh, S. Thomopoulos, and Y. Xia, 'Nanofiber membranes with controllable microwells and structural cues and their use in forming cell microarrays and neuronal networks,' Small, vol. 7, pp. 293-7, 2011. [62] J. Xie, M. R. Macewan, S. M. Willerth, X. Li, D. W. Moran, S. E. Sakiyama-Elbert, and Y. Xia, 'Conductive Core-Sheath Nanofibers and Their Potential Application in Neural Tissue Engineering,' Adv Funct Mater, vol. 19, pp. 2312-2318, 2009. [63] X. Li, M. R. Macewan, J. D. Xie, D. Siewe, X. Yuan, and Y. Xia, 'Fabrication of Density Gradients of Biodegradable Polymer Microparticles and Their Use in Guiding Neurite Outgrowth,' Adv Funct Mater, vol. 20, pp. 1632-1637, 2010. [64] F. Yang, R. Murugan, S. Wang, and S. Ramakrishna, 'Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering,' Biomaterials, vol. 26, pp. 2603-10, 2005. [65] Y. Chung-Yao, S. Chun-Yen, and J. A. Yeh, 'Nanotextured chitosan surfaces for studying cell behaviors,' in Nano/Micro Engineered and Molecular Systems (NEMS), 2013 8th IEEE International Conference on, pp. 183-186, 2013.
摘要: 
神經導管已廣泛應用於修復較長範圍損壞之神經束,然而其修復率仍遠小於預期。故為促進神經細胞於導管之增生,神經導管製作已趨向仿生化之探討,藉由不同之材料應用與表面結構之變化,以模擬神經束之原生環境。神經細胞原生環境之表面結構為奈微米尺度,可影響神經細胞之生長方向,故需製備高度圖案化之表面結構,引導神經細胞規則的排列生長,使訊息可有效的向下傳遞。故本研究由半導體製程中黃光微影技術著手,搭配奈米製程與電鑄製程,提出圖案化奈微米結構之幾丁聚醣神經導管製作流程,除兼具可快速製作、低成本、可重複使用且易於量產之特性外,且可使神經細胞有效的生長於導管內部進而發展為神經束。主要製程為以表面具奈米結構之陽極氧化鋁模作為模仁,並以黃光微影方式產生圖案化之微米結構,再以奈米電鑄方式製備具圖案化奈微米結構之鎳模具,接著以天然高分子幾丁聚醣進行翻模,製備出具有奈微米結構之神經導管。本研究選用具生物相容性與生物可降解特性之幾丁聚醣天然高分子材料做為神經導管之材料,而後將大鼠神經母細胞(B35)植覆培養於幾丁聚醣神經導管支架上,觀察不同表面結構之幾丁聚醣對神經細胞生長之影響,並研究奈微米結構是否能促進細胞之增生與引導其生長方向。實驗結果顯示,本研究之方法可成功製備具圖案化奈微米結構、奈米結構、與微米結構等三種薄膜支架;實際細胞培養顯示神經細胞於奈米結構薄膜支架可有較佳之貼附與生長,而圖案化的微米結構也確實具有引導神經細胞生長方向的作用,奈微米結構薄膜(線寬30 mm、間距30 mm)支架則有最佳促進神經細胞生長與引導神經細胞之作用。

Nerve conduits have been widely used for repairing damaged nerve bundles. However, the repair rate is still far below expectation currently. To enhance the proliferation of nerve cells on nerve conduits, nerve conduits that can mimic the natural environment of human body is a feasible solution. Since the primitive living environment, that is in the scale of nano/micro meter, can influence the growth of nerve cell, it is desirable to fabricate a scaffold mimicking the primitive living environment such that the growth of nerve cells can be well directed. Therefore, a novel chitosan nerve conduit with micro and nano hybrid patterns is proposed in this study. The microelectromechanical system (MEMS) and nickel electroforming techniques were used for the fabrication of the chitosan nerve conduits. The hemispheric array of the barrier layer of an anodic aluminum oxide (AAO) film was used as the substrate. The MEMS process was then used to fabricate micro-structure pattern on the surface of the barrier layer. Following, a nickel replica mold was produced through electroforming using the patterned AAO barrier layer as the template. Scaffolds of chitosan nerve conduit were formed by casting using the synthesized nickel replica mold. Nerve cells were then cultured on the scaffolds. The WST-1 test was used to illustrate the cells proliferation rate. The cell adhesion and morphology were observed through the Hoechst (staining nucleus) and phalloidin (staining cytoskeleton) labeling. It is observed that a micro-structure can only guide the nerve cells to grow along a certain direction, while the proposed micro and nano hybrid structure can successfully guide the growth direction and enhance the proliferation of nerve cells.
URI: http://hdl.handle.net/11455/91896
其他識別: U0005-2811201416180300
Rights: 同意授權瀏覽/列印電子全文服務,2017-08-31起公開。
Appears in Collections:生醫工程研究所

Files in This Item:
File SizeFormat Existing users please Login
nchu-103-7102068012-1.pdf3.52 MBAdobe PDFThis file is only available in the university internal network   
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.