Please use this identifier to cite or link to this item:
標題: 白金/XC72 含鐵氫氧基磷灰石複材觸媒之製備與分析應用於燃料電池之研究
Preparation and characterization of Pt/XC72-iron contained hydroxyapatite composites as catalysts for fuel cells
作者: 陳裕文
Yu-Wen Chen
關鍵字: 含鐵磷酸鹽;電子導電度;乙炔碳黑;直接甲醇燃料電池;膜電極組件;Iron contained hydroxyapatite(FeHAp);Electronic conductivity;Carbon black;Direct methanol fuel cell (DMFC);Membrane electrode assembly(MEA)
引用: 1. J.P. Gittings, C.R.B., A.C.E. Dent, I.G. Tuner, F.R. Baxter, J,B. Chaudhuri, Electronic characterization of hydroxyapatite-based bio-ceramics. Acta Biomaterialia, 2009. 5: p. 743-754. 2. W.R, G., On a gaseous voltaic battery. Philosophical Magazine Series 3, 1842. 21(140): p. 417-420. 3. Larmine, Kirk-Othmer Encyclopedia of Chemical Technology. Fuel Cells, 2000. 4. 4. 4. Williams, M.C., Fuel Cell Handbook by EG&G Technical Service Inc. US Department of Energy, 2004. 5. Suli Wang, G.S., Guoxiong Wang, Zhenhua Zhou, Xinsheng Zhao, Hai Sun, Xiaoying Fan, Baolian Yi, Qin Xin, Improvement of direct methanol fuel cell performance by modifying catalyst coated membrane structure. Electrochemistry Communications, 2005. 7(10): p. 1007-1012. 6. Young-Chul Park, S.K., Sang-Kyung Kim, Seongyop Lim, Doo-Hwan Jung, Dok-Yol Lee, Yong-Gun Shul, Dong-Hyun Peck, Effects of porous and dense electrode structures of membrane electrode assembly on durability of direct methanol fuel cells. International Journal of Hydrogen Energy, 2011. 36(23): p. 15313-15322. 7. Asad Mehmood, H.Y.H., Parametric investigation of a high-yield decal technique to fabricate membrane electrode assemblies for direct methanol fuel cells. International journal of hydrogen energy, 2013. 38: p. 12427-12437. 8.J.P eyers, H.L.M., J. Power Source, 2002. 109: p. 76-88. 9. Lingling Zhang, T.L., JianchunBao, Yawen Tang, CunLi, Preparation method of an ultrafine carbon supported Pd catalyst as an anodic catalyst in a direct formic acid fuel cell. Electrochemistry Communications, 2006. 8: p. 1625-1627. 10. Gesteiger HA, K.S., Sompalli B, Wagner FT, Activity Benchmarks and Requirements for Pt, Pt-Alloys, and Non-Pt Oxygen Reduction Catalysts for PEMFCs. Appl. Catal. B, 2005. 56: p. 9-35. 11. Piela P, E.C., Brosha E, Garzon F, Zelenay P., Ruthenium crossover in direct methanol fuel cell with PtRu black anode. J Electrochemical Society, 2004. 151(A): p. 2053-2059. 12. Sarma LS, C.C.-H., Wang G-R, Hsueh K-L, Huang C-P,Sheu H-S, et al, Investigations of direct methanol fuel cell (DMFC) fading mechanisms. J Power Sources 2007. 167: p. 358-365. 13. J. Tayal, B.R., S. Basu, Bi-metallic and tri-metallic PteSn/C, PteIr/C, PteIreSn/C catalysts for electro-oxidation of ethanol in direct ethanol fuel cell. International journal of hydrogen energy 2011. 36: p. 14884-17897. 14. Erika Teliz, V.D., Ignacio Pérez, Mariana Corengia, Carlos Fernando Zinola, Carbon supported Pt, Ru and Mo catalysts for methanol electrooxidation. International journal of hydrogen energy 2012/10. 37: p. 14761 -14768. 15. Mansour Rahsepar, M.P., Yuanzhe Piao, Hasuck Kim, Synthesis and electrocatalystic performance of high loading active PtRumultiwalled carbon nanotube catalyst for methanol oxidation. ElectrochimicaActa, 2012. 71: p. 246-251. 16. Amin R S, A.H.R.M., El-Khatib K M, El-Abd H, Souaya E R., Effect of preparation conditions on the performance of nano Pt-CuO/C electrocatalysts for methanol electro-oxidation. Interbnational Journal of Hydrogen Energy 2012. 37: p. 18870-18881. 17. Hsieh C-T, L.J.-Y., Wei J-L, Deposition and electrochemical activity of Pt-based bimetallic nanocatalysts on carbon nanotubes. Intermediate Journal of Hydrogen Energy 2009. 34: p. 658-693. 18. Li W Xin, Q.Y.Y., Nanostructured Pt-Fe/C cathode catalysts for direct methanol fuel cell: the effect of catalyst composition. International Journal of Hydrogen Energy 2010. 35: p. 2530-2538. 19. Watanabe, M.a.S.M., Electrocatalysis by ad-atoms: Part II. Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms. Journal of Electroanalytical Chemistry and Interface Electrochemistry, 1975. 60(3): p. 267-273. 20. Dinh, H.N., et al., Electrocatalysis in direct methanol fuel cells: in-situ probing of PtRu anode catalyst surfaces. Journal of Electroanalytical Chemistry, 2000. 491(1-2): p. 222-233. 21. Watanabe, M.a.S.M., Preparation of highly dispersed Pt+Ru alloy clusters and the activity for the electrooxidation of methanol. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1987. 229(1-2): p. 395-406. 22. Liu J., e.a., Studies on performance degredation of a direct methanol fuel cell (DMFC) in life test. Physicl Chemistry Chemical Physics, 2004. 6(1): p. 134-137. 23. Piela, e.a., Ruthenium Crossover in Direct Methanol Fuel Cell with Pt-Ru Black Anode. Journal of the electrochemical Society, 2004. 151(12): p. 358-365. 24. Alberti G., M.C., Layered metal lV phosphonates, a large class of inorgano-organic proton conductors. Solid State Ionics, 1997. 97(1-4): p. 177-186. 25. Kreuer, K.D., Proton Conductivity: Materials and Application. Chemistry of Materials, 1996. 8(3): p. 610-641. 26. Moffat, J.B., Phosphate as Catalysts. Catalysis Reviews. 1978. 18(2): p. 199-258. 27. L. B Kong, J.M., F. Boey, Nanosized hydroxuapatite powders deroved from coprecipitation process. Journal of Material Science, 2002. 37: p. 1131-1134. 28. Zhuang Zhi, Y., Hiroaki, Aizawa, Mamoru, Synthesis of plate-shaped hydroxyapatite via an enzyme reaction of urea with urease and its characterization. Powder Technology, 2012. 222(0): p. 193-200. 29. Akemi Yasukawa, T.Y., Kazuhiko Kandori, Tatsuo Ishikawa, Ion-exchange property and mechanism of magnasium-calciumhydroxyapatite solid solutions colloids and surfaces A: Physicochem. Eng. Aspects, 2004. 238: p. 133-139. 30. Q.Y. Ma, S.J.L., J.A. Ryan, Effects of Aqueous Al, Cd, Cu, Fe(ii), Ni and Zn on Pb immobilization by hydroxyapatite Environ. Sci. Technol, 1994(28): p. 1219-1228. 31.I. Smiciklas, S.D., I. Plecas, M. Mitric Removal of CO+2 from aqueous solution by hydroxyapatite Water Res., 2006(40): p. 2267-2274. 32.Nai-Su Pai, P.-S.C., Shiow-Kang Yen, Platinum/vivianite bifunction catalysts for DMFC. International journal of hydrogen energy, 2013. 38: p. 5259-5269. 33.Nai Su Pai, S.K.Y., Preparation and characterization of platinum/iron contained hydroxyapatite/carbon black composites. International Journal of Hydrogen Energy, 2013. 38(30): p. 13249-13259. 34.Shum, H.C., Double emulsion droplets as microreactors for synthesis of mesoporous hydroxyapatite. Chemisty of Materials, 2009. 21: p. 5548-5555. 35.廖怡萱, 質子交換膜燃料電池陰極觸媒合成、鑑定及活性測試, in 化學工程與材料科學學系. 2005, 元智大學. p. 1-157. 36.K., K., Carbon: electrochemical and physicochemical properties. Journal of the American Chemical Society, 1988. 110 No.18: p. 541. 37.Schmidt, T.J., et al., Characterization of High-Surface-Area Electrocatalysts Using a Rotating Disk Electrode Configuration. Journal of the Electrochemical Socirty, 1998. 145(7): p. p. 2354-2358. 38.Gan Lin, D.H.-d., Li Bao-hua, Kang Fei-yu, The effect of particle size on the interaction of Pt catalyst particles with a carbon black support. New Carbon Materials, 2010. 25(1): p. 53-59. 39.A.S. AricoÁa, A.K.S., H. Kimc, S. Parkc, M. Minc, V. Antonuccia, An XPS study on oxidation states of Pt and its alloys with Co and Cr and its relevance to electroreduction of oxygen. Applied Surface Science, 2001. 172: p. 33-40. 40.Zhaolin Liu, L.M.G., Liang Hong, Weixiang Chen, Jim Yang Lee, Carbon-supported Pt nanoparticles as catalysts for proton exchange membrane fuel cells. Journal of Power Sources, 2005. 139: p. 73-78. 41. Wang, X., MCM-41-supported iron phosphate catalyst for partial oxidation of methane to oxygenates with oxygen and nitrous oxide. Journal of Catalysis, 2003. 42.Lee, S.J., et al., Effects of Nafion impregnation on performance of PEMFC electrodes. Electrochemica Acta, 1998. 43(24): p. 3693-3701. 43.Wang, X.e.a., Durability investigation of carbon nanotube as catalyst supports for proton exchange membrane fuel cell. Journal of Power Sources, 2006. 158(1): p. p. 154-159. 44.Mohamed S. El- Deab, F.K., Takeo Ohsaka, Impact of acrylonitrile poising on oxygen reduction reaction at Pt/C catalysts. Journal of Power Sources, 2013. 229: p. 65-67.
According to the previous study in our lab, hydroxyapatite (HAp) microspheres were used not only in biomaterials as kinds of drug carriers and dental ceramics owing to its awesome bio-compatibility but also as novel supports of catalysts for fuel cells. On it, nanosized platinum were successfully reduced to become bi-functional catalysts when ion exchanged with iron to form FeHAp, revealing the excellent electrochemical mass activity in methanol oxidation reaction(MOR) without obvious CO poisoning effects after mixed with carbon black to derive Pt/FeHAp/C.

However, it is known that hydroxyapatite made from Ca3(PO4)2.2H2O and H3PO4 is a sort of ceramic with very poor electronic conductivity (7×10-13 S/cm) and ionic conductivity (2×10-7 S /cm)[1]. In order to enhance its conductivity, the precipitation of HAp was carried out directly on XC72, the surface of which was modified to generate more OH- radicals for strengthening the bonding between HAp and XC72.

Surface modified XC72 powders were put in M Ca(NO3)2 and M H3PO4 to obtain weight ratio 1:10, 1:3, 1:1, 1:0.5 respectively and further partially ion exchanged with ferrous ions to form XC72 iron-contained hydroxyapatite (XC-FeHAp) composites on which Pt in H2PtCl6 solution containing CTABr was reduced to form Pt/XCFeHap1:10, Pt/XCFeHap1:3, Pt/XCFeHap1:1, Pt/XCFeHap1:0.5 catalysts and then, annealed at 100℃ for 3 hr. The features of these catalysts were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), field emission transmission electron microscopy – live fast Fourier transform (FETEM-Live FFT), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma-mass spectrometry (ICP-MS), Fourier transform infrared spectroscopy (FTIR), membrane assembly electrode (MEA) and cyclic voltammetry (CV).

The size of platinum particles dispersed by cetyltrimethylammonium bromide (CTABr) was from 4.5 to 6.6 nm calculated by XRD and from 2.64 to 4.42 nm observed by TEM. Besides, cyclic voltammetry indicates that IR-drop decreased with the increasing ratio of XC72 to FeHAp and the de-sorption peak potential was obviously shifted from -0.05 V to -0.189 V (vs. Ag/AgCl/ saturated KCl). The electrochemical surface area (ECSA) without extra carbon addition ranged from 429.37 to 861.50 (m2/g) while the other with extra carbon addition ranges from 670.91 to 1149.70 (m2/g). In methanol oxidation reaction (MOR), Pt/XCFeHap1:10 illustrates the highest mass activity 233 (A/gPt) and the least on-set potential 0.28V. No forward or reverse current peak were observed, indicating scarce CO poison effect.

In membrane electrode assembly (MEA) tests, Pt/XCFeHAp1:3 revealed the highest current density and power density among those four prepared catalysts whoch all higher than Pt/C and cHAPt. Also, the highest open circuit voltage (OCV) of Pt/XCFeHAp1:10 consisting with the lowest on-set potential in MOR. For cyclic tests, the retained capacity of Pt/XCFeHAp1:1 reached up to 96.53% compared to 70.5% of extra carbon black addition.

根據之前的實驗,氫氧基磷灰石(Hydroxyapatite)微米球不只在生醫材料中被當作藥物載體,且亦因為良好的生物相容性被用來當作牙科陶瓷及燃料電池之觸媒載體。當與二價鐵離子(Fe+2)做離子交換後形成 FeHAp,奈米白金粒子被成功地還原於其上再與碳黑均勻混合得到 Pt/FeHAp/C,形成雙功效觸媒;其在甲醇氧化反應中表現出優秀的電化學質量活性,無一氧化碳(CO)中毒現象產生。

然而,由硝酸鈣與磷酸所形成的磷酸鈣鹽類係一種陶瓷其電子導電度(7x10-13S/cm)與離子導電度(2x10-7 S/cm)均差。因此在本研究企圖將 HAp 沉積析出於乙炔碳黑上以增加其導電度之前處理,先將乙炔碳黑置於富氧環境中改變表面官能基如 OH-,為強化氫氧基磷灰石與乙炔碳黑之間的鍵結,亦藉此方法提升氫氧基灰石(HAp)導電度。

在此研究中,已表面處理之乙炔碳黑(XC72)與氫氧基磷灰石(HAp)水溶液中企圖獲得其重量比為 1:10、1:3、1:1 與 1:0.5 使氫氧基磷灰石均勻成長於乙炔碳黑上;再與二價鐵離子做離子交換形成混合物乙炔碳黑-含鐵氫氧基磷灰石複合物(XCFeHAp),之後再加入含 CTABr 分散劑之六氯鉑酸溶液將白金還原於其上形成Pt/XCFeHAp1:10、Pt/XCFeHAp1:3、Pt/XCFeHAp1:1、Pt/XCFeHAp1:0.5…等觸媒,再將這些觸媒熱處理 100℃、3 小時。觸媒特性經由 X-ray 繞射(XRD)、場發射掃描式電子顯微鏡(FE-SEM)、場發射穿透式電子顯微鏡即時富利葉轉換(FE-TEM Live-FFT)、X-ray 電子能譜(XPS)、感應耦合電漿質量能譜儀(ICP-MS)、富利葉轉換紅外線光譜儀(FTIR)、膜電極組件(MEA)與循環伏安法(CV)加以分析。

分散白金顆粒之大小由 XRD 方程式計算得 4.5-6.6nm,由 TEM 觀察計算得2.64-4.42nm,此外,循環伏安結果顯示隨著乙炔碳黑量增加,IR 降越不明顯且氫氣吸附峰從-0.05V 到-0.189V (vs.Ag/AgCl/ saturated KCl)。沒額外添加碳黑之電化學活性表面積介於 429.37-861.50(cm2/mg),而額外添加碳黑之電化學活表面積提高至 670.91-1149.70(cm2/mg);在甲醇氧化反應中,Pt/XCFeHAp1:10 有最高的質量活性 233(A/gPt)和最低的起始電位 0.28V 且沒有明顯反應峰出現顯示無毒化反應。

在製備的四種觸媒中、Pt/C 與 cHAPt 中 Pt/XCFeHAp1:3 之 MEA 表現出最高的電流密度與功率密度;且 Pt/XCFeHAp1:10 有最高之開路電位,與其在 MOR中且最低起始電位的結果吻合。1000 圈長時間穩定性測試方面,以Pt/XCFeHAp1:1 之殘留電化學活性表面積達 96.53%最高,相較於額外添加碳黑者僅 70.5%。
其他識別: U0005-0906201511034000
Rights: 同意授權瀏覽/列印電子全文服務,2018-07-15起公開。
Appears in Collections:材料科學與工程學系

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-103-7101066011-1.pdf6.26 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.