Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91923
標題: 蒸鍍CIGS薄膜之成長機制研究
The growth mechanism of Cu(In,Ga)Se2 thin films during evaporation process.
作者: 張鈺淇
Yu-Chi Chang
關鍵字: 太陽能電池;銅銦鎵硒;蒸鍍;Solar cell;CIGS;evaporaion
引用: [1]. http://www.bp.com/ [2]. http://www.moeaboe.gov.tw/ [3]. 林明獻, 2008, 太陽電池技術入門.pp.1-5,2-15,2-17,2-18,5-1,7-1,9-1,10-1,12-1. [4]. 敏斯(Christopher Mims)撰, 甘錫安譯, 2010, 科學人雜誌, 95. [5]. Martin A. Green著,曹昭陽, 狄大衛, 李秀文譯, 2007, 太陽電池工作原理、技術與系統應用. pp. 45, 47-49. [6]. T.S. Moss, T.D.F.Hawkins, Infrared Physics 1, 1961, pp. 111. [7]. S. Kasap, Principles of Electronic Materials and Devices, 2005. [8]. O.S. Ksasp. Optoelectronics and Photobics:Principles and Practices, New Jersey, Prentice Hall, 2001. [9]. A.M.Barnett, A. Rothwarf, Transactions on electron devices, 27, 1980, No.4, pp.615-630. [10]. J.Tringe, J. Nocerino, R. Tallon, W. Kemp, W. Shafarman, and D. Marvin, J. Appl. Phys. 91, 2002, pp. 516. [11]. Schock, H. W.; Noufi, R. Prog. Photovolt: Res. Appl., 8, 2000, pp. 151. [12]. W. E. Devaney, W. S. Chen, J. M. Stewart and R. A. Mickelsen, 1990, Transactions on electron devices, 37. [13]. J. R. Tuttle, J. S. Ward, A. Duda, T. A. Berens, M. A.Contreras, K. Ramanathan, A. L. Tennant, J. Keane, E. D. Cole, K. Emery and R. Noufi, Proc. Mat. Res. Soc. Symp., 426, 1996, pp. 143-151, [14]. I, Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To and R. Noufi, Photovolt: Res. Appl., 16, 2008, pp. 235. [15]. P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann and M. Powalla, Photovolt: Res. Appl., 19, 2011, pp.894-897. [16]. http://www.pv-tech.org/news/zsw_achieves_record_lab_cigs_cell_efficiency_of_20.8 [17]. http://www.nrel.gov/ncpv/ [18]. F. Kessler, D. Rudmann, Solar Energy, 77, 2004, pp.685-695. [19]. T. Wada, N. Kohara, S. Nishiwaki, and T. Negami,Thin Solid Films, 387, 2001, pp.118. [20]. Shay, J. L. 1975, Wernick, Elevtronic properties, and applications. [21]. R.R. Arya, T.C. Lommasson, S. Wiedeman, 23rd IEEE Photovoltaic Specialist Conf., 1993, pp. 516. [22]. C. Domain, S. Laribi, S. Taunier, and J. F. Guillemoles, J. Phys. Chem. Solids, 64, 2003, pp. 1657-1663. [23]. S. B. Zhang, S.-H. Wei, A. Zunger, and H. Katayama-Yoshida, Phys. Rev. B, 57, 1998, pp. 9642-9656. [24]. D. Schmid, M.Ruckh, F. Grunwald, and H. W. Schock, J. Appl. Phys., 73 ,1993, pp. 2902. [25]. D.Y. Lee, J. H. Yun, K. H. Yooh, and B. T. Ahn, Thin solid films, 410, 2002, pp. 171-176. [26]. Wei, S-H., Zhang, S. B. & Zunger,. Appl. Phys. Lett. 72, 1998, pp. 3199-3201. [27]. Dominik Rudmann, 2004, Effect of sodium on growth and properties of Cu(In,Ga)Se2 thin films and solar cell. for the degree of doctor of sciences. pp. 37, 92, 136. [28]. H.W.Schock, in procedings of 12th European Photovoltaic Solar Energy conf., Amsterdam, The Nertherland, pp. 944. [29]. W. N. Shafarman, R. Klenk, and B. E. Mc Candless, J. Appl. Phys., 79, 1996 , pp. 7324. [30]. V. AGranovich, D. J. T Aylor, Cu(In1-xGa)Se2 Based Thin film Solar Cells, 35, 2010, pp. 116. [31]. C. H. Chang, A. Davydov, B. J. Stambery, and T. J. Anderson, Proceedings of the 25th IEEE PVSC, 1996 (unpublished), pp. 849. [32]. S. M. WASIM, Solar Cells, 16, 1986, pp. 289-316. [33]. J. Kessler, K. O. Velthaus, M. Ruckh, R. Laichinger, H. W. Schock, D. Lincot, R. Ortega, and J. Vedel, 6 th Int. Photovoltaic Science and Engineering Conf. (PVSEC-6), 1992, pp. 1005-1010. [34]. M. J. Furlong, M. Froment, M. C. Bernard, R. Cort` es, A. N. Tiwari, M. Krejci, H. Zogg, and D. Lincot, J. Cryst. Growth, 193, 1998, pp. 114-122. [35]. R. Ortega-Borges and D. Lincot, J. Electrochem. Soc., 140, 1993, pp. 3464-73. [36]. Y. Hashimoto, T. Satoh, T. Minemoto, S. Shimakawa, and T. Negami, 17 th European Photovoltaic Solar Energy Conf., 2, 2001, pp. 1225-1228. [37]. T. Nakada, Appl. Phys. Lett., 74, 1999, pp. 2444-6. [38]. C. S. Jiang, F. S. Hasoon, H. R. Moutinho, H. A. Al-Thani, M. J. Romero, and M. Al-Jassim, Appl. Phys. Lett.,82, 2003,pp. 127-129. [39]. D. Schmid, M. Ruckh, F. Grunwald and H. W. Schock, J. Appl. Phys., 73, 1993, pp. 2902-2909. [40]. M. Bodeg?rd, L. Stolt and J. Hedstr?m, 12th European Photovoltaic Solar Energy Conf., 1994, pp. 1743-1746. [41]. C. Heske, D. Eich, R. Fink, E. Umbach, S. Kakar, T. v. Buuren, C. Bostedt, L. J. Terminello, M. M. Grush, T. A. Callcott, F. J. Himpsel, D. L. Ederer, R. C. C. Perera, W. Riedl and F. Karg, Appl. Phys. Lett., 75, 1999, pp. 2082-2084. [42]. T. Nakada, M. Hongo and E. Hayashi, Thin Solid Films, 431-432, 2003, pp.242-248. [43]. J. V. Li, X. Li, Y. Yan, C.-S. Jiang, W. K. Metzger, I. L. Repins, M. A. Contreras and D. H. Levi, J. Vac. Sci. Technol., B 27(6), 2009, pp. 2384-2389. [44]. R. Verma, D. Datta, A. Chirila, D. Guttler, J. Perrenoud, F. Pianezzi, U. Muller, S. Kumar and A. N. Tiwari, J. Appl. Phys., 108, 2010, pp. 074904-074910. [45]. R. Wendt, 1996, Analyse der Energie- und Teilchenstr?ome bei der ZnO:Al-Abscheidung mittels Magnetron-Sputterns f?ur die Herstellung von D?unnschichtsolarzellen, PhD thesis, Ruhr-Universit?at Bochum. [46]. S. Ishizuka, K. Sakurai, A. Yamada, K. Matsubara, P. Fons, K. Iwata, S. akamura, Y. Kimura, T. Baba, H. Nakanishi, T. Kojima and S. Niki, Sol. Energy Mater. Sol. Cells, 87, 2005, pp. 541-548. [47]. J. Kessler, C. Chityuttakan, J. Lum, J. Scholdstrom and L. Stolt, Prog. Photovolt:Res. Appl., 11, 2003, pp.319-331. [48]. G. Hanna,J. Mattheis,V. Laptev,Y. Yamamoto,U. Rau and H. W. Schock, Thin Solid Films, 431-432, 2003, pp. 31-36. [49]. R. Klenk, T. Walter, H. W. Schock and D. Cahen, Adv. Mater., 5, 1993, pp. 114-119. [50]. J. R. Tuttle, M. A. Contreras, A. Tennant, D. Albin and R. Nou?, Twenty Third IEEE Photovoltaic Specialists Conf., 1993, pp. 415-421. [51]. S. Chaistsak, A. Yamada ,and M. Konagai, Jpn. J. Appl. Phys. 41, 2002, pp. 507-513. [52]. T. P. His, C. C. Chuang, C. S. Wu, J. C. Chang , J. W. Guo and W. C. Chen, Solid-State Electron, 56, 2011, pp. 175-178. [53]. A. M. Gabor, J. R. Tuttle, D. S. Albin, M. A. Contreras, R. Noufi and A. M. Hermann, Appl.Phys.Lett., 65,1994, pp. 198-200. [54]. A. Gabor, J. Tuttle, M. H. Bode, A. Franz, A. Tennant, M. A. Contreras, R. Noufi, D. G. Jensen and A. M. Hermann, Sol. Energy Mater. Sol. Cells, 41-42, pp. 247-260. [55]. 田民波著, 顏怡文校訂, 2007,薄膜技術與薄膜材料. pp.39, 420-427. [56]. K. Reichelt and X. Jiang, Thin Solid Films, 191, 1990, pp.91-126. [57]. C. Zener, Acta. Crystal. 3, 1995, pp.346. [58]. L. Bernstein, J. Electrochem. Soc., 113(12), 1966, pp.1282-1288. [59]. T. T. Rautiainen and A. P. Sutton, Phys. Rev. B, 59, 1999, pp. 13681-13692. [60]. 馬飛, 2004, 晶體表面能各向異性分析及其對薄膜中異常晶粒生長的驅動作用pp. 10-15. [61]. 張建民, 徐可為, 張美榮, 薄膜中異常晶粒生長理論及能量各向異性52(5), 2003, Chin. Phys. Soc., pp. 1207-1212. [62]. 石德珂, 沈蓮著, 材料科學基礎 1995, pp. 180. [63]. A. L. Fahrenbruch and R. H. Bube, Fundamentals of solar cells. New York: Academic Press. 1983. [64]. M. Powallan, P. Jackson, W. Witte, D. Hariskos, S. Paetel, C. Tschamber and W. Wischmann, Sol. Energy Mater. Sol. Cells, 119, 2013, pp. 51-58. [65]. M. A. Contreras, Manuel J. Romero and R. Noufi, 511-512, 2006, pp. 51-54. [66]. G. Hanna, 2004, Determination and influence of Na supply and Se flux during growth of Cu(In,Ga)Se2 thin films. [67]. M. Bodeg?rd, L. Stolt, and J. Hedstr, Proceedings of the 12 th European Photovoltaic Solar Energy Conf., 1994, pp. 1743-1746. [68]. D. W. Niles, M. Al-Jassim, and K. Ramanathan, J. Vac. Sci. Technol. A, 17, 1999, pp. 291-296. [69]. A. Rockett, Thin Solid Films, 361-362, 2000, pp. 330-337. [70]. R. J. Matson, J. E. Granata, S. E. Asher, and M. R. Young, NCPV Photovoltaics Program Review: Proceedings of the 15th conf., 462, 1998, pp. 542-549. [71]. A. Rockett, J. S. Britt, T. Gillespie, C. Marshall, M. M. Al-Jassim, F. Hasoon, R. Matson, and B. Basol, Thin Solid Films, 372, 2000, pp. 212-217. [72]. H. P. Wang, I. Shih, and C. H. Champness, Conference Record of the Twenty Eighth IEEE Photovoltaic Specialists Conf., 2000, pp. 642-645. [73]. J. E. Granata and J. R. Sites, Proceedings of the 2nd World Conf. on Photovoltaic Solar Energy Conversion, I, 1998, pp. 604-607. [74]. K. Granath, M. Bodegard and L. Stolt, Sol. Energy Mater. Sol. Cells, 60, 2000, pp. 364-371. [75]. D. W. Niles, K. Ramanathan, F. Hasoon, R. Noufi, B. J. Tielsch, and J. E. Fulghum, J. Vac. Sci. Technol. A, 15, 1997, pp. 3044-3049. [76]. M. A. Contreras, B. Egaas, P. Dippo, J. Webb, J. Granata, K. Ramanathan, S. Asher, A. Swartzlander and R. Noufi, the Twenty Sixth IEEE Photovoltaic Specialists Conf., 1997, pp. 359-362 . [77]. B. J. Stanbery, C. H. Chang, and T. J. Anderson, in Proc. of the 11th Int. Conf. on Ternary and Multinary Compounds, 1997, pp. 915-922. [78]. B. J. Stanbery, S. Kincal, S. Kim, T. J. Anderson, O. D. Crisalle, S. P. Ahrenkiel and G. Lippold, Twenty Eighth IEEE Photovoltaic Specialists Conf., 2000, pp. 440-445. [79]. J. E. Granata and J. R. Sites, 2nd World Conference on Photovoltaic Solar Energy Conversion, I, 1998, pp. 604-607. [80]. T. Mise , T. Nakada, Sol. Energy Mater. Sol. Cells, 93, 2009, pp. 1000-1003. [81]. J. L. Hern?ndez?Rojas, I. M?rtil, J. Santamaria, G. Gonz?lez?Diaz and F. S?nchez?Quesada, J. Vac. Sci. Technol. A, 13, 1995, pp. 1083. [82]. 鄭信民, 林麗娟, 2002, X光繞射應用簡介,工業材料雜誌, pp. 100-107. [83]. J. Tuttle, M. Contreras, A. Tennant, D. Albin, R.Noufi, Proc. 23rd IEEE Photovolatic Specialists conf., 1993, pp. 415-421. [84]. J. S. Park, Z. Dong, Sungtae Kim, and J. H. Perepezko, J. Appl. Phys., 87, 2000, pp. 3683-3690. [85]. D.S. Albin, G.D. Mooney, A. Duda, J. Tuttle, R. Matson, R. Noufi, Solar Cells, 30, 1991, pp. 47-52. [86]. Wolfram Witte, Robert Kniese, Michael Powalla, Thin Solid Films, 517, 2008, pp. 867-869. [87]. S. Levcenko, N. N. Syrbu, E. Arushanov, V. Tezlevan, R. Fern?ndez-Ruiz, J. M. Merino and M. Le?n, J. Appl. Phys., 99, 2006, pp. 073513. [88]. S. B. Zhang, Su-Huai Wei, and Alex Zunger, H. Katayama-Yoshida, Phys. Rev. B, 57, pp. 9642-9656. [89]. S. Niki, P. J. Fons, A. Yamada, Y. Lacroix, H. Shibata, H. Oyanagi, M. Nishitani, T. Negami, and T. Wada, Appl. Phys. Lett., 74, 1999, pp. 1630-1632. [90]. Mo?nig H, Fischer ChH, Caballero R, Kaufmann CA, Allsop N, Gorgoi M, et al. Acta Mater., 57, 2009, pp.3645-3651. [91]. Siebentritt S, Papathanasiou N, Albert J, Lux-Steiner MC. Appl. Phys. Lett, 88, 2006, pp. 151919. [92]. Liao D, Rockett A. J. Appl. Phys., 91,2002, pp.1978. [93]. R. Caballeroa, V. Izquierdo-Roca, X. Fontane, C.A. Kaufmann, J.A?lvarez-Garc??a, A. Eicke, L. Calvo-Barrio, A.Pe?rez-Rodr??guez, H.W. Schock and J.R. Morante, Acta Materialia 58, 2010, pp. 3468-3476. [94]. R. Sakdanuphab, C. Chityuttakan, A. Pankiew, N. Somwang, K. Yoodee and S. Chatraphorn, J. Cryst. Growth, 319, 2011, pp. 44-48. [95]. Y. M. Shin,C. S. Lee,D. H. Shin,Y. M. Ko,E. A. Al-Ammar, H. S. Kwon and B. T. Ahn. ECS J. Solid State Sci. Technol., 2, 2013, pp. 248-252. [96]. S. Ishizuka, A. Yamada, M. M. Islam, H. Shibata, P. Fons, T. Sakurai, K. Akimoto, and S. Niki, J. Appl. Phys., 106, 2009, pp. 034908. [97]. A. Rocketta, M Bodegard, K. Granath and Lars Stolt, IEEE 25th PVSC, 1996, pp.985-987. [98]. David W. Niles, K. Ramanathan, F. Hasoon, R. Noufi, B. J. Tielsch and J. E. Fulghum , J. Vac. Sci. & Technol. A, 15, 1997, pp. 3044-3049.
摘要: 
We product CIGS absorb layers by three-stage evaporation process. The CIGS thin films deposited on the Mo/Al2O3 and Mo/SLG, The experimentals are the Cu flux, Cu/(In + Ga) ratio and substrate temperature.
In the second stage, CIGS thin film is deposited on a Mo/Al2O3. In、Ga are transported quickly by Cu vacancy of Cu2-xSe, so that it helps the grain size of CIGS grows, and becauce diffusivity of Ga is slower than In, that causes Ga granding.When changing the Cu flux, the distribution of Cu in the thin film is non-uniform and this phenomenon can improve the deffusion rate of In, Ga durning the third stage. CIGS thin films almost form (112) orintaion, but in the high Cu flux and high Cu/(In+Ga) ratios it will change the orintaion to (220/204).
CIGS thin film is depositied on Mo/SLG durning the third stage. Na is increasing the mobility of surface atoms to promote Ga diffusion in the thin films and the more Cu vacancy which can generat the more NaInSe2.
CIGS thin film is depositied on different substrate temperature durning the third stage.When the substrate temperature rised, the Ga diffuse to the top of thin film of CIGS. Na added to CIGS thin film, when the substrate temperature rised, the grain size is increasing, and Na2SeO3 prohibit the Ga deffusion in the surface.

本實驗採用三階段蒸鍍法製作CIGS吸收層,將CIGS薄膜鍍著在Mo/Al2O3與Mo/SLG上,藉由改變Cu流量、Cu/(In+Ga)比例及升高基板溫度下進行製備,觀察其成長過程。
實驗結果顯示在Mo/Al2O3基板上進行第二階段CIGS的薄膜蒸鍍,此時可以藉由液相Cu2-xSe中的Cu空位快速傳遞In、Ga,使其晶粒成長,而在傳遞的過程中,In、Ga速率不同形成Ga梯度,而在改變Cu流量下,因為Cu成份分布會不均以及第二段階段Ga的梯度較陡,而根據推測兩項因素可使第三階段Ga梯度平坦化。對於優選方向來說CIGS通常往最低能量的(112)生長,而Cu流量升高,產生的Cu空位可以降低應變能,使優選方向往(220/204)方向生長。
在Mo/SLG基板上,進行第三階段CIGS的薄膜蒸鍍,Na會在表面增加原子遷移率促進Ga擴散以及Cu空位增加會增加NaInSe2的生成。
改變第二、三階段基板溫度進行三階段蒸鍍的實驗,升高基板溫度可以促進在Mo/Al2O3上的CIGS之Ga擴散,而在Mo/SLG上之CIGS薄膜在基板溫度升高時,促使晶粒大小增加,而在表面因為Na氧化物析出過多而阻擋了Ga的擴散。
URI: http://hdl.handle.net/11455/91923
其他識別: U0005-2811201416182778
Rights: 同意授權瀏覽/列印電子全文服務,2016-08-31起公開。
Appears in Collections:材料科學與工程學系

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-103-7101066039-1.pdf15.31 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.