Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91936
標題: 不同乙烷/氮氣比例對以 熱化學氣相沉積法製備碳薄膜性質之影響
Effects of different ethane/nitrogen ratios on the properties of thermal chemical vapor deposition carbon thin films
作者: 賴信宏
Hsin-Hung Lai
關鍵字: 乙烷;氮氣;熱化學氣相沉積法;碳薄膜;C2H6;N2;thermal chemical vapor deposition;carbon films
引用: [1] J. Robertson, Materials Science and Engineering: R, 37 (2002) 129. [2] P. Ehrenfreund and B.H. Foing, Science, 329 (2010) 1159. [3] C. Sealy, Nanotoday, 6 (2011) 4. [4] R.J. King, Geology Today, 22 (2006) 71. [5] J. C. Pu, S. F. Wang, and J. C. Sung, Applied Surface Science, 256 (2009) 668. [6] J. Robertson, Advances in Physics, 35 (1986) 317. [7] X. He, J. Song, H. Xia, J. Tan, B. Zhang, Z. He, X. Zhou, Z. Zhu, M. Zhao, X. Liu, L. Xu, and S. Bai, Carbon, 68 (2014) 95. [8] S.S. Chen, S.T. Shiue, Y.H. Wu, and K.J. Cheng, Surface & Coatings Technology, 202 (2007) 798. [9] K.M. Krishna, Y. Nukaya, T. Soga, T. Jimbo, and M. Umeno, Solar Energy Materials and Solar Cells, 65 (2001) 163. [10] R.N. Basu, O. Altin, M.J. Mayo, C.A. Randall, and S. Eser, Journal of The Electrochemical Society, 148 (2001) A506. [11] H. Mohammadia and K. Mequanint, Medical Engineering & Physics, 33 (2011) 131. [12] A. Kluba, D. Bociaga, and M. Dudek, Diamond and Related Materials, 19 (2010) 533. [13] M. Umeno and S. Adhikary, Diamond and Related Materials, 14 (2005) 1973. [14] X.M. Tiana, M. Rusop, Y. Hayashi, T. Soga, T. Jimbo, and M. Umeno, Solar Energy Materials and Solar Cells, 77 (2003) 105. [15] A. Czyzniewski, Surface and Coatings Technology, 203 (2009) 1027. [16] K.M. Krishna, M. Umeno, Y. Nukaya, T. Soga, and T. Jimbo, Applied Physics Letters, 77 (2000) 1472. [17] H.W. Kroto, J.R. Heath, S.C. O''Brien, R.F. Curl, and R.E. Smalley, Nature, 318 (1985) 162. [18] S. Saito and A. Oshiyama, Physical Review Letters, 66 (1991) 2637. [19] H. Zhu, J. Wei, K. Wang, and D. Wu, Solar Energy Materials and Solar Cells, 93 (2009) 1461. [20] A.F. Hebard, M.J. Rosseinsky, R.C. Haddon, D.W. Murphy, S.H. Glarum, T.T.M. Palstra, A.P. Ramirez, and A.R. Kortan, Nature, 350 (1991) 600. [21] S. Iijima, Nature, 354 (1991) 56. [22] R.L. McCreery, Chemical Reviews, 108 (2008) 2646. [23] V.S. Muralidharan and A. Subramania, “Nanoscience and Technology,” Ane Books Pvt. Ltd., New Delhi, India (2009). [24] A. Merkoçi, Microchimica Acta, 152 (2006) 157. [25] K.S. Novoselov, A. K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science, 306 (2004) 666. [26] A.K. Geim and K.S. Novoselov, Nature Materials, 6 (2007) 183. [27] J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, and S. Roth, Nature, 446 (2007) 60. [28] R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, and A.K. Geim, Science, 6 (2008) 1308. [29] J.H. Chen, C. Jang, S. Xiao, M. Ishigami, and M.S. Fuhrer, Nature Nanotechnology, 3 (2008) 206. [30] A. K. Geim, Science, 324 (2009) 1530. [31] K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi, and B.H. Hong, Nature, 457 (2009) 706. [32] F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, and K.S. Novoselov, Nature Materials, 6 (2007) 652. [33] N. Mohanty and V. Berry, Nano Letters, 8 (2008) 4469. [34] H.B. Heersche, P.J. Herrero, J.B. Oostinga, L.M.K. Vandersypen, and A.F. Morpurgo, Nature, 446 (2007) 56. [35] C. Xie, P. Lv, B. Nie, J. Jie, X. Zhang, Z. Wang, P. Jiang, Z. Hu, L. Luo, Z. Zhu, L. Wang, and C. Wu, Applied Physics Letters, 99 (2011) 133113. [36] http://phys.org/news/2009-01-scientists-ground-breaking-material-graphane.html [37] M.L. Hitchman and K.F. Jensen, “Chemical Vapor Deposition,” Academic Press, San Diego, U.S.A. (1993). [38] M.J. Jackson, “Microfabrication and Nanomanufacturing,” CRC Press, Florida, U.S.A. (2006). [39] P. Delhaes, Carbon, 40 (2002) 641. [40] H.O. Pieson, “Handbook of Chemical Vapor Deposition,” 2nd, Noyes, New York, U.S.A. (1999). [41] Liang-Hsun Lai,Huei-Cheng Li,Sham-Tsong Shiue,Tsong-Jen Yang and Hung-Yi Lin “Effects of Ethlene/Ammonia Mixtures on Thermal Chemical Vapor Deposition Rates and Microstructures of Carbon Films” Master''s Degree Thesis, Department of Materials Science and Engineering, National Chung Hsing University, Taichung, Taiwan. (R.O.C.) (2013) [42] M. Ohring, “Materials Science of Thin Films,” 2nd Ed., Academic Press, San Diego, U.S.A. (2002). [43] A. Pfrang, Y.Z. Wan, and T. Schimmel, Carbon, 48 (2010) 921. [44] Y. S. Han and J. Y. Lee, Electrochim. Acta, 48 (2003) 1073. [45] Y. S. Ding, W. N. Li, S. Iaconetti, X. F. Shen, J. DiCarlo, F. S. Galasso, and S. L. Suib, Surf. Coat. Technol., 200 (2006) 3041. [46] C. A. Taylor and W. K. S. Chiu, Surf. Coat. Technol., 168 (2003) 1. [47] W. N. Li, Y. S. Ding, S. L. Suib, J. F. DiCarlo, and F. S. Galasso, Surf. Coat. Technol., 190 (2005) 366. [48] Ke-Jie Huang. “Effects of different process parameters on the properties of carbon films prepared by thermal chemical vapor deposition using ethylene and nitrogen”, Master''s Degree Thesis, Department of Materials Science and Engineering, National Chung Hsing University, Taichung, Taiwan. (R.O.C.) (2011). [49] Rong-Shian Chu.“Effects of different nitrogen/methane ratios on the residual stress of a-C:N thin films prepared by plasma enhanced chemical vapor deposition”, Thin Solid Films,Vol. 517, Issue 17, pp. 4879-4882. (Impact Factor: 1.884). (R.O.C.) (2009) [50] Ren-Hong Lee, “Hermetically Carbon-coated Optical Fibers Prepared by Thermal Chemical Vapor Deposition : Effects of Different Acetylene/Nitrogen Ratios, Temperatures, Pressures, and Flow Rates on The Properties of Carbon Coating”, Master''s Degree Thesis, Department of Materials Science and Engineering, National Chung Hsing University, Taichung, Taiwan. (R.O.C.) (2009). [51] Shao-En Chiou, “Effects of different process parameters on the properties of carbon films prepared by thermal chemical vapor deposition using propane and nitrogen”, Master''s Degree Thesis, Department of Materials Science and Engineering, National Chung Hsing University, Taichung, Taiwan. (R.O.C.) (2012). [52] JCPDS card files, no 41‐1487 [53] B.D. Cullity and S.R. Stock, “Elements of X-ray Diffraction,” 3rd Ed., Prentice Hall, New Jersey, U.S.A. (2001). [54] R.L. Mccreery, “Raman Spectroscopy for Chemical Analysis,” John Wiley and Sons, New York, U.S.A. (2000). [55] A.C. Ferrari and J. Robertson, Physical Review B, 61 (2000) 14095. [56] F. Tuinsta and J.L. Koenig, The Journal of Chemical Physical, 53 (1970) 1126. [57] P.C. Eklund, J.M. Holden, and R.A. Jishi, Carbon, 33 (1995) 959. [58] J.F. Moulder, W.F. Stickle, P.E. Sobol, J. Chastain, and K.D. Bomben, “Handbook of X-ray Photoelectron Spectroscopy,” Perkin-Elmer Corporation, Minnesota, U.S.A. (1992). [59] J. Kwon, Y.S. Kim, K. Yoon, S. M. Lee, and S.I. Park, Ultramicroscopy, 105 (2005) 51. [60] 汪建民主編,材料分析,中國材料科學學會 (2008)。 [61] T. Young, Philosophical Transactions of the Royal Society of London, 95 (1805) 65. [62] Instruction manual of the Four-point Probe (Model: QT-50), Quatek Corporation Limited, Napson Corporation, Japan. [63] C.N. Wei, “Applications of Residual Gas Analyzer in Vacuum Facilities,” Master Thesis, Department of Mechanical Engineering Chung Yuan University, Taiwan (2005). [64] X. Bourrat, J. Lavenac, F. Langlais, and R. Naslain, Carbon, 39 (2001) 2376. [65] N. Shimodaira and A. Masui, J. Appl. Phys., 92 (2002) 902. [66] A. C. Ferrari and J. Robertson, Phys. Rev. B, 63 (2001) 121405-1. [67] A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, and U. Poschl, Carbon, 43 (2005) 1731. [68] L. G. Cancado, K. Takai, T. Enoki, M. Endo, Y. A. Kim, H. Mizusaki, A. Jorio, L. N. Coelho, R. Magalhães-Paniago, and M. A. Pimenta, Appl. Phys. Lett., 88 (2006) 163106-1. [69] H. S. Zhang and K. Komvopoulos, J. Appl. Phys., 106 (2009) 093504-1. [70] K. Matsumoto, Y. Hirata, S. Sameshima, and N. Matsunaga, J.Ceram. Soc. Jpn., 116 (2008) 486. [71] H. Yokomichi, A. Masuda, and N. Kishimoto, Thin Solid Films, 395 (2001) 249. [72] P. Mérel, M. Tabbal, M. Chaker, S. Moisa, and J. Margot, Appl. Surf. Sci., 136 (1998) 105. [73] G. L. Dû, N. Celini, F. Bergaya, and F. Poncin-Epaillard, Surf. Coat. Technol., 201 (2007) 5815. [74] S. Kaciulius, Surf. Interface. Anal., 44 (2012) 1155. [75] Y. Mizokawa, T. Miyasato, S. Nakamura, K. M. Geib, and C. W. Wilmsen, Surf. Sci., 182 (1987) 431. [76] Y. Mizokawa, T. Miyasato, S. Nakamura, K. M. Geib, and C. W. Wilmsen, J. Vac. Sci. Technol., A, 5 (1987) 2809. [77] J. C. Lascovich and S. Scaglione, Appl. Surf. Sci., 78 (1994) 17. [78] J. C. Lascovich, R. Giorgi, and S. Scaglione, Appl. Surf. Sci., 47 (1991) 17. [79] A. Mezzi and S. Kaciulis, Surf. Interface. Anal., 42 (2010) 1082. [80] J. Sobol-Antosiak and W. S. Ptak, Mater. Letters, 56 (2002) 842.
摘要: 
This study investigates the effects of C2H6/(C2H6+N2) ratios on the properties of carbon films prepared by thermal chemical vapor deposition. The thickness, microstructure, electrical property of carbon films and residual gases in the gas phase were investigated by field emission scanning electron microscopy, X-ray diffraction spectrometer, Raman scattering spectrometer, X-ray photoelectron spectrometer, four-points probe, and residual gas analyzer. Experimental results indicate that the carbon film is mainly arisen from the deposition of acetylene (C2H2), ethylene (C2H4), and ethenyl(C2H3) on the silica glass plate substrate. The deposition rate of carbon films increases with increasing the C2H6/(C2H6+N2) ratio, which is a first-order reaction. When the C2H6/(C2H6+N2) ratio increases, the electrical resistivity of carbon films increases, but but the crystallinity, degree of ordering, size of mean crystallite, and content of sp2 C=C bonding of carbon films decrease. Finally, these results are compared with those using CH4/N2, C2H4/N2, C2H2/N2, and C3H8/N2 mixtures.

本篇論文以熱化學氣相沉積法製備碳薄膜,並探討不同的C2H6/( C2H6+N2)比例對碳薄膜性質之影響。本實驗使用場發射掃描式電子顯微鏡、X光繞射儀、拉曼散射光譜儀、X光光電子能譜儀、四點探針儀和殘留氣體分析儀量測碳薄膜的沉積厚度、微觀結構、電學性質和製程中的殘留氣體。實驗結果發現,碳薄膜主要是由氣體中的C2H2、C2H3和C2H4沉積於石英玻璃基板上所形成。當C2H6/( C2H6+N2) 比例增加時,碳薄膜的沉積速率也會隨著增加,其為1次方反應。另一方面,當C2H6/( C2H6+N2) 比例增加時,碳薄膜的電阻率會隨著增加,但碳薄膜的結晶度、結構有序程度、平均晶粒大小和sp2 C=C鍵結的相對含量則會隨著下降。最後,本實驗的結果也和以甲烷/氮氣、乙烯/氮氣、乙炔/氮氣和丙烷/氮氣做為前驅氣體所製備之碳薄膜性質做一比較
URI: http://hdl.handle.net/11455/91936
其他識別: U0005-2508201512381500
Rights: 同意授權瀏覽/列印電子全文服務,2018-08-27起公開。
Appears in Collections:材料科學與工程學系

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-104-5100066016-1.pdf3.9 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.