Please use this identifier to cite or link to this item:
標題: 不同射頻功率對以乙烯/氮氣混合氣體製備感應耦合式電漿輔助熱化學氣相沉積碳薄膜性質之影響
Effects of different radio-frequency powers on inductively coupled plasma thermal chemical vapor deposition carbon thin films using ethene/nitrogen mixtures
作者: 林士豪
Shi-Hao Lin
關鍵字: 乙烯;熱化學氣相沉積;感應耦合電漿;碳薄膜;ethene;thermal chemical vapor deposition;inductively coupled plasma;carbon films
引用: [1]J. Robertson, Materials Science and Engineering: R, 37 (2002) 129. [2]M.I. Katsnelson, Materials Today, 10 (2007) 20. [3]R.J. King, Geology Today, 22 (2006) 71. [4]A. Deneuville, Comptes Rendus de l''Académie des Sciences - Series IV - Physics-Astrophysics, 1 (2000) 81. [5]E. Kohn, M. Adamschik, P. Schmid, A. Denisenko, A. Aleksov, and W. Ebert, Journal of Physics D: Applied Physics, 34 (2001) R77. [6]R.S. Balmer, J.R. Brandon, S.L. Clewes, H.K. Dhillon, J.M. Dodson, I. Friel, P.N. Inglis, T.D. Madgwick, M.L. Markham, T.P. Mollart, N. Perkins, G.A. Scarsbrook, D.J. Twitchen, A.J. Whitehead, J.J. Wilman, and S. M. Woollard, Journal of Physics: Condensed Matter, 21 (2009) 364221. [7]M.J. Jackson, “Microfabrication and Nanomanufacturing,” CRC Press, Florida, U.S.A. (2006). [8]H.W. Kroto, J.R. Heath, S.C. O''Brien, R.F. Curl, and R.E. Smalley, Nature, 318 (1985) 162. [9]S. Saito and A. Oshiyama, Physical Review Letters, 66 (1991) 2637. [10]W. Kratschmer, L.D. Lamb, K. Fostiropoulos, and D.R. Huffman, Nature, 347 (1990) 354. [11]H. Zhu, J. Wei, K. Wang, and D. Wu, Solar Energy Materials and Solar Cells, 93 (2009) 1461. [12]A.F. Hebard, M.J. Rosseinsky, R.C. Haddon, D.W. Murphy, S.H. Glarum,T.T.M. Palstra, A.P. Ramirez, and A.R. Kortan, Nature, 350 (1991) 600. [13]S. Iijima, Nature, 354 (1991) 56. [14]R.L. McCreery, Chemical Reviews, 108 (2008) 2646. [15]A. Merkoçi, Microchimica Acta, 152 (2006) 157. [16]B.I. Yakabson and R.E. Smalley, Ammons Scientific, 85 (1997) 324. [17]R.S. Ruoff and D.C. Lorents, Carbon, 33 (1995) 925. [18]V.S.Muralidharan and A. Subramania, “Nanoscience and Technology,” Ane Books Pvt. Ltd., New Delhi, India (2009). [19]K.S. Novoselov, A. K. Geim, S.V. Morozov, D. Jiang,Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science, 306 (2004) 666. [20]A.K. Geimand K.S. Novoselov, Nature Materials, 6 (2007) 183. [21]J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth,and S. Roth, Nature, 446 (2007) 60. [22]R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, and A.K. Geim, Science, 6 (2008) 1308. [23]J.H. Chen, C. Jang, S. Xiao, M. Ishigami, and M.S. Fuhrer, Nature Nanotechnology, 3 (2008) 206. [24]A. K. Geim, Science, 324 (2009) 1530. [25]K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi, and B.H. Hong, Nature, 457 (2009) 706. [26]F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, and K.S. Novoselov, Nature Materials, 6 (2007) 652. [27]N. Mohanty and V. Berry, Nano Letters, 8 (2008) 4469. [28]H.B. Heersche, P.J. Herrero, J.B. Oostinga, L.M.K. Vandersypen, and A.F. Morpurgo, Nature, 446 (2007) 56. [29]C. Xie, P. Lv, B. Nie, J. Jie, X. Zhang, Z. Wang, P. Jiang, Z. Hu, L. Luo, Z. Zhu, L. Wang, and C. Wu, Applied Physics Letters, 99 (2011) 133113. [30]J. Robertson, Amorphous carbon Adv. Phys. 35 (1986) 317 [31]W. Jacob and W. Möller, On the structure of thin hydrocarbon films. Appl. Phys. Lett.63 (1993) 1771 [32]X. He, J. Song, H. Xia, J. Tan, B. Zhang,Z. He, X. Zhou, Z. Zhu, M. Zhao, X. Liu,L. Xu, and S. Bai, Carbon, 68 (2014) 95. [33]S.S. Chen, S.T. Shiue, Y.H. Wu, and K.J. Cheng, Surface & Coatings Technology, 202(2007) 798. [34]K.M. Krishna, Y. Nukaya, T. Soga, T. Jimbo, and M. Umeno, Solar Energy Materials and Solar Cells, 65 (2001) 163. [35]R.N. Basu, O. Altin, M.J. Mayo, C.A. Randall, and S. Eser, Journal of The Electrochemical Society, 148 (2001) A506. [36]H. Mohammadia and K. Mequanint, Medical Engineering & Physics, 33 (2011) 131. [37]A. Kluba, D. Bociaga, and M. Dudek, Diamond and Related Materials, 19 (2010) 533. [38]M. Umeno and S. Adhikary, Diamond and Related Materials, 14 (2005) 1973. [39]X.M. Tiana, M. Rusop, Y. Hayashi, T. Soga, T. Jimbo, and M. Umeno, Solar Energy Materials and Solar Cells, 77 (2003) 105. [40]A. Czyzniewski,Surfaceand Coatings Technology, 203 (2009) 1027. [41]K.M. Krishna, M. Umeno,Y. Nukaya, T. Soga, and T. Jimbo, Applied Physics Letters, 77 (2000) 1472. [42]M.L. Hitchman and K.F. Jensen, “Chemical Vapor Deposition,” Academic Press, San Diego, U.S.A. (1993). [43]M.J. Jackson, “Microfabrication and Nanomanufacturing,” CRC Press, Florida, U.S.A. (2006). [44]P. Delhaes, Carbon, 40 (2002) 641. [45]H.O. Pieson, “Handbook of Chemical Vapor Deposition,” 2nd, Noyes, New York, U.S.A. (1999). [46]M. Ohring, “Materials Science of Thin Films,” 2nd Ed., Academic Press, San Diego, U.S.A. (2002). [47]A. Pfrang, Y.Z. Wan, and T. Schimmel, Carbon, 48 (2010) 921. [48]M.A. Lieberman and A.J. Lichtenberg, “Principles of Plasma Discharges and Materials Processing,” John Wiley and Sons, New York, U.S.A. (1994). [49]J. Hopwood, Plasma Source Science and Technology, 1 (1992) 109. [50]A. Oberlin, Carbon, 40 (2002) 7. [51]L.H. Lai, S.T. Shiue, and H.Y. Lin, Vacuum, 87 (2013) 141. [52]賴宗福與張之樺,科學發展,455 (2010) 28。 [53]K.J. Huang, “Effects of different process parametersonthe properties of carbon films prepared by thermal chemical vapor deposition using ethylene and nitrogen,”Master thesis, Department of Materials Science and Engineering, National Chung Hsing University, Taichung City, Taiwan (R.O.C.) (2011). [54]C.N. Wei, “Applications of Residual GasAnalyzer in VacuumFacilities,” Master Thesis, Department of Mechanical Engineering Chung Yuan University, Taoyuan,Taiwan (2005). [55]B.D. Cullity and S.R. Stock, “Elements of X-ray Diffraction,” 3rd Ed., Prentice Hall, New Jersey, U.S.A. (2001). [56]R.L. Mccreery, “Raman Spectroscopy for Chemical Analysis,” John Wiley and Sons, New York, U.S.A. (2000). [57]A.C. Ferrari and J. Robertson, Physical Review B, 61 (2000) 14095. [58]F. Tuinstaand J.L. Koenig, The Journal of Chemical Physical, 53 (1970) 1126. [59]P.C. Eklund, J.M. Holden, and R.A. Jishi, Carbon, 33 (1995) 959. [60]J.F. Moulder, W.F. Stickle, P.E. Sobol, J. Chastain, and K.D. Bomben, “Handbook of X-ray Photoelectron Spectroscopy,” Perkin-Elmer Corporation, Minnesota, U.S.A. (1992). [61]Instruction manual of the Four-point Probe (Model: QT-50), Quatek Corporation Limited, Taipei, Taiwan. [62]R.S. Tsang, C.A. Rego, P.W. May, M.N.R. Ashfold, and K.N. Rosser, Diamond and Related Materials,6 (1997) 247. [63]C. Pan, C.J. Chu, J.L. Margrave, and R.H. Hague, Journal of The Electrochemical Society, 141 (1994) 3246. [64]H. Yokomichi, A. Masuda, and N. Kishimoto, Thin Solid Films, 395 (2001) 249. [65]Y.S. Ding, W.N. Li, S. Iaconetti, X.F. Shen, J. DiCarlo, F.S. Galasso, and S.L. Suib, Surface and Coatings Technology, 200 (2006) 3041. [66]L.H. Lai, S.T. Shiue,Surface and Coatings Technology, 215 (2013) 161. [67]T. Jawhari, A. Roid, and J. Casado, Carbon, 33 (1995) 1561. [68]A.C. Ferrari and J. Robertson, Physical Review B, 63 (2001) 121405. [69]L.G. Cancado, K. Takai, T. Enoki, M. Endo, Y.A. Kim, H. Mizusaki, A. Jorio, L.N. Coelho, R. Magalhães-paniago, and M.A. Pimenta, Applied Physics Letters, 88 (2006) 163106. [70]E. Tomasella, C. Meunier, and S. Mikhailov, Surface and Coatings Technology, 141 (2001) 286. [71]M. Lejeune, O.D. Drouhin, J. Henocque, R. Bouzerar, A. Zeinert, and M. Benlahsen, Thin Solid Films, 389 (2001) 233. [72]H.S. Zhang, K. Komvopoulos, Journal of Applied Physics, 106 (2009) 093504. [73]P. Mérel, M. Tabbal, M. Chaker, S. Moisa, and J. Margot, Applied Surface Science, 136 (1998) 105. [74]G.L. Dû, N. Celini, F. Bergaya, and F. Poncin-Epaillard, Surface and Coatings Technology, 201 (2007) 5815. [75]S. Kaciulius, Surface and Interface Analysis, 44 (2012) 1155. [76]Y. Mizokawa, T. Miyasato, S. Nakamura, K.M. Geib, and C.W. Wilmsen, Surface Science, 182 (1987) 431. [77]Y. Mizokawa, T. Miyasato, S. Nakamura, K. M. Geib, and C. W. Wilmsen, Journal of Vacuum Science and Technology A, 5 (1987) 2809. [78]J.C. Lascovich and S. Scaglione, Applied Surface Science, 78 (1994) 17. [79]J.C. Lascovich, R. Giorgi, and S. Scaglione, Applied Surface Science, 47 (1991) 17. [80]A. Mezzi and S. Kaciulis,Surface and Interface Analysis, 42 (2010) 1082. [81]J. Sobol-Antosiak and W. S. Ptak, Mater. Letters, 56, (2002) 842. [82]T.H. Fang and W.J. Chang, Applied Surface Science, 220 (2003) 175. [83]J.H. Son, M.Y. Park, and S.W. Rhee, Thin Solid Films, 335 (1998) 229.
This study investigates the effects of different radio-frequency (rf) powers on the properties of carbon thin films prepared by thermal chemical vapor deposition (thermal CVD) enhanced with inductively coupled plasma. The residual gases in the thermal CVD process, thickness, microstructure, and electrical properties of carbon thin films are investigated by residual gases analyzer, field emission scanning electron microscopy, X-ray diffractometer, Raman scattering spectrometer, X-ray photoelectron spectrometer, and four-points probe. Residual gases analysis results reveal that the main species in the gas phase contain H2, CH3, CH4, C2H, C2H2, HCN, and N2 (or C2H4), in which H2 decreases with increasing the rf power, but HCN increases with increasing the rf power. Experimental results indicate that the deposition rate of carbon thin films decreases with increasing the rf power; this is because the increase of HCN suppresses the deposition of carbon films. The crystallinity and the ordering degree of carbon thin films increase with increasing the rf power. This is because the decrease of the deposition rate enhances the rearrangement of carbon atoms, which results in the increase of average grain size of carbon films. The number of sp2 carbon sites decreases with increasing the rf power; this is because the increase of the hydrogen content suppresses the formation of the sp2C=C bonds. Finally, the electrical resistivity of carbon thin films increases with increasing the rf power, this is resulted from the decrease of the number of the sp2 C=C bonding.

本論文以感應耦合式電漿輔助熱化學氣相沉積法製備碳薄膜,並探討不同射頻功率對碳薄膜性質之影響。本實驗使用殘留氣體分析儀、場發射掃描式電子顯微鏡、X光繞射儀、拉曼散射光譜儀、X光光電子能譜儀及四點探針儀來分析製程上的殘留氣體、碳薄膜的沉積厚度、微觀結構與電學性質。由殘留氣體分析結果可知,氣相中的主要產物包含了H2、CH3、CH4、C2H、C2H2、HCN 和N2 (or C2H4),其中H2隨射頻功率增加而上升、HCN隨射頻功率增加而減少。研究結果發現,碳薄膜的沉積速率隨著射頻功率的增加而下降;這是由於HCN的增加會抑制碳薄膜的沈積。結晶度及結構有序程度會隨著射頻功率增加而上升;這是由於沉積速率變慢,碳原子有足夠的時間排列,使得平均晶粒大小上升所造成。sp2C=C鍵結的相對含量隨著射頻功率增加而下降;這是由於氫氣含量變多,而氫氣會抑制sp2C=C鍵的形成。最後,碳薄膜電阻率會隨著射頻功率的增加而增加,這是由於sp2C=C鍵結的數量減少所致。
其他識別: U0005-1508201512424500
Rights: 同意授權瀏覽/列印電子全文服務,2018-08-19起公開。
Appears in Collections:材料科學與工程學系

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-104-5098066010-1.pdf3.68 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.