Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91961
DC FieldValueLanguage
dc.contributor薛顯宗zh_TW
dc.contributor.author黃嘉立zh_TW
dc.contributor.authorJia-Li Huangen_US
dc.contributor.other材料科學與工程學系所zh_TW
dc.date2015zh_TW
dc.date.accessioned2015-12-11T09:06:06Z-
dc.identifierU0005-2606201511571300zh_TW
dc.identifier.citation[1] J. Robertson, Adv. Phy., 35 (1986) 317. [2] I.N. Remediakis, M.G. Fyta, C. Mathioudakis, G. Kopidakis, and P.C. Kelires, Diam. Relat. Mat., 16 (2007) 1835. [3] R. Sengupta, M. Bhattacharya, S. Bandyopadhyay, and A.K. Bhowmick, Progress in Polymer Science, 36 (2011) 638. [4] D.R. Haag and H.H. Kung, Top Catal, 36 (2015) 762. [5] A. Astefanei, O. Núñez, and M.T. Galceran, Analytica Chimica Acta, (2015). [6] H. Zhu, J. Wei, K. Wang, and De. Wu, Sol. Energy Mater. Sol. Cells, 93 (2009) 1461. [7] R.J. King, Geology Today, 22 (2006) 71. [8] A. Modabber Asl, P. Kameli, M. Ranjbar, H. Salamati, and M. Jannesari, Superlattices and Microstructures, 81 (2015) 65. [9] J. Wang, C. Wang, Y. Liu, L. Cheng, W. Li, Q. Zhang, and X. Yang, Appl. Surf. Sci., 340 (2015) 50. [10] H.W. Kroto, J.R. Heath, S.C. Obrien, R.F. Curl, and R.E Smalley, Nature, 318 (1985) 162. [11] W. Krätschmer, L.D. Lamb, K. Fostiropoulos, and D.R. Huffman, Nature, 347 (1990) 354. [12] R.C. Haddon, A.F. Hebard, M.J. Rosseinsky, D.W. Murphy, and S.J. Duclos, Nature, 350 (1991) 320. [13] Y. Kawazoe, T. Kondow, and K. Ohno, “Clusters and Nanomaterials,” Springer, Heidelberg, Germany (2002). [14] S. Iijima, Nature, 354 (1991) 56. [15] A. Merkoci, Microchimica Acta, 152 (2006) 157. [16] V.S. Muralidharan and A. Subramania, “Nanoscience and Technology,” Ane Books Pvt. Ltd., New Delhi, India (2009). [17] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. jing, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science, 306 (2004) 666. [18] A.K. Geim and K.S. Novoselov, Nature Materials, 6 (2007) 183. [19] S.M. Hafiz, S.K. Chong, N.M. Huang, and S.A. Rahman, Carbon, 86 (2015) 1. [20] G. Venugopal, K. Krishnamoorthy, and S.J. Kimb, Appl. Surf. Sci., 280 (2013) 903. [21] T.O. Terasawa and K. Saiki, Carbon, 50 (2012) 869. [22] J.H. Lee, E.K. Lee, W.J. Joo, Y. Jang, B.S. Kim, and J.Y. Lim, Science, 344 (2014) 28. [23] G.P. Veronese, M. Allegrezza, M. Canino, E. Centurioni, L. Ortolani, R. Rizzoli, V. Morandi, and C. Summonte, Sol. Energy Mater. Sol. Cells, 138 (2015) 35-36. [24] J.V. Anguita, S.R.P. Silva, and W. Young, J. Appl. Phys., 88 (2000) 5175. [25] R.C. Barklie, Diam. Relat. Mat., 10 (2001) 174. [26] R.U.A. Khan, S.R.P. Silva, Diam. Relat. Mat., 10 (2001) 1036. [27] A. Majumdar, S.C. Das, T. Shripathi, and R. Hippler, Chemical Physics Letters, 524 (2012) 62. [28] J. Schwan, S. Ulrich, T. Theel, H. Roth, H. Ehrhardt, P. Becker, and S.R.P. Silva, J. Appl. Phys., 82 (1997) 6024. [29] S. Aisrnberg and R. Chabot, J. Appl. Phys., 42 (1971) 2953. [30] L. Holland and S. M. Ojha, Thin Solid Films, 38 (1976) 17. [31] A.M. Asl, P. Kameli, M. Ranjbar, H. Salamati, and M. Jannesari, Superlattices and Microstructures, 81 (2015) 65. [32] J. Robertson, Mater. Sci. Eng. R, 37 (2002) 129. [33] M. Rusop, T. Soga, and T. Jimbo, Sol. Energy Mater. Sol. Cells, 90 (2006) 3214. [34] T.S. Chen, S.E. Chiou, and S.T. Shiue, Thin Solid Films, 528 (2013) 86. [35] A. Ilie, O. Harel, N.M.J. Conway, T. Yagi, J. Robertson, and W.I. Milne, J. Appl. Phys., 87 (2000) 789. [36] H.C. Hsueh, Y.K. Wang, and S. Lee, Surf. Coat. Technol., 231 (2013) 353. [37] W. D. Callister, Jr., “Materials Science and Engineering: An Introduction,” U.S.A. (2007) [38] M. J. Jackson, “Microfabrication and Nanomanufacturing,” CRC Press, Florida, U.S.A. (2006). [39] A. Grill., “Cold Plasma in Materials Fabrication: From Fundamentals to Applications,”. IEEE Press, New York, U.S.A. 1994. [40] Z. Sun, C.H. Lin, Y.L. Lee, J.R. Shi, B.K. Tay, X. Shi., Journal of Applied Physics, 87 (2000) 8122. [41] G. Capote, R. Prioli, P.M. Jardim, A.R. Zanatta, L.G. Jacobsohn, F.L. Freire Jr., Journal of Non-Crystalline Solids, 338-340 (2004) 503. [42] G. Capote, F.L. Freire, L.G. Jacobsohn, G. Mariotto., Diamond and Related Materials, 13 (2004) 1454. [43] H. Tahara, K.I. Minami, A. Murai, T. Yasui, T. Yoshikawa., Japanese Journal of Applied Physics, 34 (1995) Part 1, 4A: 1972. [44] M.L. Hitchman, K.F. Jensen, “Chemical Vapor Deposition,” Academic Press, San Diego, U.S.A. (1993). [45] T.S. Chen, Y.C. Hsueh, S.E. Chiou, and S.T. Shiue, Sol. Energy Mater. Sol. Cells, 137 (2015) 185. [46] J. Xie and K. Komvopoulos, Surf. Coat. Technol., 262 (2015) 15. [47] M. Ohring, “Materials science of thin films”, 2nd Ed., Academic Press, San Diego, U.S.A. (2002). [48] R.S. Chu and S.T. Shiue, Thin Solid Films, 517 (2009) 4879. [49] M. Othman, R. Ritikos, N.H. Khanis, N.M.A. Rashid, S.M.A. Gani, and S.A. Rahman, Thin Solid Films, 529 (2013) 439. [50] C. Aragón and J.A. Aguilera, Spectrochimica Acta Part B: Atomic Spectroscopy, 63 (2008) 893. [51] R.M. Silverstein, F.X. Webster, and D.J. Kiemle, “Spectrometric Identification of Organic Compounds,” New Jersey, U.S.A. (2005). [52] R.C. Denney and R. Sindair, Visible and Ultraviolet Spectyoscopy, John Wiley (1991). [53] E.C. Le Ru and P.G. Etchegoin, “Principles of Surface-Enhanced Raman Spectroscopy,” Wellington, New Zealand (2009). [54] R.W. Wood, Nature, 122 (1928) 349. [55] C.D. Martino, F. Demichelis, and A. Tagliaferro, Diamond Relat. Mater., 4 (1995) 1210. [56] M. Lejeune, M. Benlahsen, and R. Bouzerar, Appl. Phys. Lett., 84 (2004) 344. [57] J. Schwan, S. Ulrich, V. Batori, H. Ehrhardt, and S.R.P. Silva, J. Appl. Phys., 80 (1996) 440. [58] A.C. Ferrari and J. Robertson, Phys. Rev. B, 61 (2000) 14095. [59] G. Abrasonis, R. Gago, M. Vinnichenko, U. Kreissig, A. Kolitsch, and W. Möller, Phys. Rev. B, 73 (2006) 125427. [60] L.G. Cançado, M.A. Pimenta, B.R.A. Neves, M.S.S. Dantas, and A. Jorio, Phys. Rev. Lett., 93 (2004) 247401. [61] Z. Ning, S. Cheng, and S. Yang, Curr. Appl. Phys., 2 (2002) 439. [62] C. Ye, Z. Ning, S. Cheng, Y. Xin, and S. Xu, Diam. Relat. Mat., 13 (2004) 191. [63] J. Tauc, R. Grigorovici, and A. Vancu, Phys. status solid B, 15 (1966) 627. [64] J. Robertson, J. Non-Cryst. Solids, 198 (1996) 615. [65] Rusli, J. Robertson, and G.A.J. Amaratunga, J. Appl. Phys., 80 (1996) 2998. [66] H.C. Hsueh, H.C. Li, D. Chiang, and S. Lee, Journal of The Electrochemical Society, 159 (2012) D77. [67] S.P. Louh, I.C. Leu, and M.H. Hon, Diam. Relat. Mat., 14 (2005) 1001. [68] M.J. Chiang and M. H. Hon, Thin Solid Films, 516 (2008) 4765. [69] M. Kral, A. Ogino, K. Narushima, N. Inagaki, M. Yamashita, and M. Nagatsu, Journal of Applied Physics, 46 (2007) 7470. [70] K. J. Clay, S. P. Speakman, G. A. J. Amaratunga and S. R. P. Silva, Journal of Applied Physics, 79 (1996) 7227. [71] M.M. Larijani, F. Le Normand, O. Crégut, Applied Surface Science, 253 (2007) 4051. [72] Q. Shen, Y. Miyata, T. Suzuki, S. Morita, and K. Kitagawa, Physics of Plasma, 15 (2008) 073502. [73] K. Tachibana, M. Nishida, H. Harima, and Y. Urano, J. Phys. D: Appl. Phys., 17 (1984) 1727. [74] C.I. Butoi, M.L. Steen, J.R.D. Peers, and E.R. Fisher, J. Phys. Chem. B, 105 (2001) 5957. [75] J.C. Legrand, A.M. Diamy, R. Hrach, and V. Hrachovä, Vacuum, 50 (1998) 492-494. [76] A.M. Diamy, R. Hrach, V. Hrachovä, and J.C. Legrand, Vacuum, 61 (2001) 405-406. [77] H.C. Thejaswini, A. Majumdar, T.M. Tun, R. Hippler, Advances in Space Research, 48 (2011) 857. [78] M. Othman, R. Ritikos, N.H. Khanis, N.M.A. Rashid, S.M.A. Gani, and S.A. Rahman, Thin Solid Films, 529 (2013) 440. [79] M. Othman, R. Ritikos, N.H. Khanis, N.M.A. Rashid, S.M.A. Gani, and S.A. Rahman, Materials Chemistry and Physics, 144 (2014) 379. [80] K. Nakanishi, Philippa H. Solomon, “Infrared Absorption Spectroscopy,” (1977). [81] S. Al-Riyami, S. Ohmagari, T. Yoshitake, Diam. Relat. Mat., 20 (2011) 1073. [82] A. Majumdar, G. Scholz, R. Hippler, Surf. Coat. Technol., 203 (2009) 2015. [83] L.H. Lai, D.Y. Wu, H.C. Hsueh, and S.T. Shiue, Journal of Solid State Science and Technology, 3 (2014) M49. [84] P. M´erel, M. Tabbal, M. Chaker, S. Moisa, and J. Margot, Appl. Surf. Sci., 136 (1998) 105. [85] G.L. Du, N. Celini, F. Bergaya, and F. Poncin-Epaillard, Surf. Coat. Technol., 201 (2007) 5815. [86] S. Kaciulius, Surf. Interface. Anal., 44 (2012) 1155. [87] J. Sobol-Antosiak, W.S. Ptak, Materials Letters, 56, 842-848 (2002) [88] N. Shimodaria and A. Masui, Journal of Applied Physics, 92 (2002) 902. [89] A. C. Ferrari and J. Robertson, Phys. Rev. B, 61 (2000) 14095. [90] J.K. Shin, C.S. Lee, K.R. Lee, and K.Y. Eun, Applied Physics Letters, 78 (2001) 631. [91] A.C. Ferrari, S.E. Rodil, and J. Robertson, Phys. Rev. B, 67 (2003) 155306. [92] A. Majumdar, R. Bogdanowicz, S. Mukherjee, and Rainer Hippler, Thin Solid Films, 527 (2013) 151. [93] M.A. Green. Solar Cells: Operating Principles, Technology, and System Applications. New Jersey, USA: Prentice-Hall; 1982. [94] D. Song, E. C. Cho, G. Conibeer, C. Flynn, Y. Huang, and M. A. Green, Solar Energy Materials & Solar Cells, 92 (2008) 474. [95] V. Capek, and D. P. Sheehan, “ Challenges to The Second Low of Thermodynamics: Theory and Experiment,” Springer, U.S.A. (2005).zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/91961-
dc.description.abstractThe n-Type amorphous carbon thin films fabricated by plasma enhanced chemical vapor deposition using nitrogen/ethane (N2/C2H6) mixtures gases. The radio-frequency power, working pressure, and substrate temperature were kept at 150 W, 60 Pa, and 298 K, respectively. The carbon thin films thickness with identical thickness (about 40 nm). The plasma diagnostics, microstructures, optical, and electrical properties of carbon films were investigated. The experimental results indicate that when the N2/C2H6 ratio increases from 0 to 7.5, the activity species of C, C2, CN, NH, and CH increase, and thus, the deposition rate of carbon thin films also increases. Alternatively, as the N2/C2H6 ratio increases from 7.5 to 15, the C2H6 partial pressure decreases and activity species of C, C2, CN, NH, and CH are also decrease, thus, the deposition rate of carbon thin films will decrease. The carbon thin films fabricated at the N2/C2H6 ratio of 7.5 has a maximum graphitization degree, nitrogen-carbon bonds, nitrogen-hydrogen bonds, sp2 carbon bonds, and dielectric constant. However, it has the lowest optical band gap, and electrical resistivity. Finally, the n-Type amorphous carbon thin films of all kinds are deposited on p-type silicon to fabricate a-C:H(N)/p-Si devices.The a-C:H(N)/p-Si device at the N2/C2H6 ratio of 7.5 has an optimum electrical property, the built-in voltages in the a-C:H(N)/p-Si device are 1.33 V and an ideality factor of 1.43.en_US
dc.description.abstract本論文之n型非晶質碳薄膜主要是以電漿輔助化學氣相沉積法利用氮氣/乙烷混和氣體製備。實驗過程中,射頻功率、工作壓力以及基材溫度為150 W、60 Pa以及298 K,而碳薄膜厚度固定為40 nm。本實驗針對電漿診斷、微觀結構、光學以及電學性質進行探討。實驗結果顯示,當N2/C2H6比例由0上升至7.5時,電漿中活性物種C、C2、CN、NH以及CH 數量增多致使碳薄膜的沉積速率增加,而當N2/C2H6比例由7.5上升至15時,電漿中活性物種C、C2、CN、NH以及CH 數量減少致使碳薄膜的沉積速率下降。N2/C2H6比例為7.5之碳薄膜其石墨化程度、C≡N、N-H鍵結、sp2 C=C相對含量以及介電常數有最大值。然而,其光學能隙以及電阻率則有最小值。本次實驗亦將所有比例之n型非晶質碳薄膜沉積於p型矽晶圓上,以製備出a-C:H(N)/p-Si元件。N2/C2H6比例為7.5時,所製備出之a-C:H(N)/p-Si元件具有最佳的電學性質,其內建電位為1.33 V,理想因子值為1.43。zh_TW
dc.description.tableofcontents摘要 i Abstract ii 總目錄 iii 圖目錄 vi 表目錄 ix 第1章 緒論 1 1-1 文獻回顧 1 1-1-1 碳元素之介紹 1 1-1-2 碳元素之各種同素異形體特性與應用 2 1-2 非晶質碳薄膜摻雜不同元素改質之特性 11 1-2-1 n型之非晶質碳薄膜性質 11 1-2-2 p型之非晶質碳薄膜性質 12 1-2-3 pn接面二極體之基本架構與應用原理 12 1-3 非晶質碳薄膜沉積法介紹 16 1-3-1 電漿輔助化學氣相沉積法之簡介 16 1-3-2 電漿輔助化學氣相沉積法之沉積機制 18 1-4 本研究之動機與目的 23 第2章 實驗步驟及儀器原理 25 2-1 試片之準備與前處理 27 2-2 實驗參數設定 30 2-3 n型非晶質碳薄膜及pn接面二極體製備 34 2-3-1 簡介電漿輔助化學氣相沉積系統 34 2-3-2 簡介濺鍍沉積系統 37 2-3-3 簡介自動型鍍膜系統 40 2-4 電漿診斷 42 2-5 非晶質碳薄膜厚度量測 45 2-6 非晶質碳薄膜微觀結構量測 47 2-6-1 傅立葉轉換紅外光光譜儀 47 2-6-2 X光光電子能譜儀 50 2-6-3 拉曼散射光譜儀 53 2-7 非晶質碳薄膜光學性質量測 58 2-8 非晶質碳薄膜電學性質量測 62 2-8-1 電阻率量測 62 2-8-2 介電常數量測 65 2-9 pn接面二極體特性量測 69 2-9-1 電流電壓特性曲線量測 69 2-9-2 電容電壓特性曲線量測 70 第3章 結果與討論 71 3-1 不同氮氣/乙烷比例之電漿物種診斷分析 71 3-2 不同氮氣/乙烷比例對碳薄膜沉積速率之影響 77 3-3 不同氮氣/乙烷比例對碳薄膜微觀結構之影響 79 3-3-1 傅立葉轉換紅外光光譜儀分析 79 3-3-2 X光光電子能譜儀分析 82 3-3-3 拉曼散射光譜儀分析 88 3-5 不同氮氣/乙烷比例對碳薄膜光學性質之影響 92 3-6 不同氮氣/乙烷比例對碳薄膜電學性質之影響 95 3-6-1 電阻率分析 95 3-6-2 介電常數分析 97 3-7 不同氮氣/乙烷比例對pn接面二極體性質之影響 100 3-7-1 電流電壓特性曲線分析 100 3-7-2 電容電壓特性曲線分析 105 3-8 不同氮氣/乙烷及氮氣/甲烷比對非晶質碳薄膜特性之影響 108 第4章 結論 110 參考文獻 111zh_TW
dc.language.isozh_TWzh_TW
dc.rights同意授權瀏覽/列印電子全文服務,2018-06-30起公開。zh_TW
dc.subject電漿輔助化學氣相沉積法zh_TW
dc.subjectn型非晶質碳薄膜zh_TW
dc.subjectPECVDen_US
dc.subjectn-Type amorphous carbon thin filmsen_US
dc.title不同氮氣/乙烷比例對以電漿輔助化學氣相沉積法製備n型非晶質碳薄膜特性之影響zh_TW
dc.titleEffects of different nitrogen/ethane ratios on characteristics of n-Type amorphous carbon thin films fabricated by plasma enhanced chemical vapor depositionen_US
dc.typeThesis and Dissertationen_US
dc.date.paperformatopenaccess2018-06-30zh_TW
dc.date.openaccess2018-06-30-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1zh_TW-
item.grantfulltextrestricted-
item.cerifentitytypePublications-
item.openairetypeThesis and Dissertation-
item.fulltextwith fulltext-
Appears in Collections:材料科學與工程學系
Files in This Item:
File SizeFormat Existing users please Login
nchu-104-7102066004-1.pdf6.68 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.