Please use this identifier to cite or link to this item:
標題: 不同製程參數對以丙烷/氨氣製備熱化學氣相沉積碳薄膜性質之影響
Effects of different process parameters on the properties of carbon films prepared by thermal chemical vapor deposition using propane/ammonia mixtures
作者: 吳丹筠
Dan-Yun Wu
關鍵字: 碳薄膜,熱化學氣相沉積,丙烷/氨氣;carbon film,thermal chemical vapor deposition,propane/ammonia
引用: [1] J. Robertson, Materials Science and Engineering: R, 37 (2002) 129. [2] P. Ehrenfreund and B.H. Foing, Science, 329 (2010) 1159. [3] C. Sealy, Nanotoday, 6 (2011) 4. [4] R.J. King, Geology Today, 22 (2006) 71. [5] J. C. Pu, S. F. Wang, and J. C. Sung, Applied Surface Science, 256 (2009) 668. [6] J. Robertson, Advances in Physics, 35 (1986) 317. [7] X. He, J. Song, H. Xia, J. Tan, B. Zhang, Z. He, X. Zhou, Z. Zhu, M. Zhao, X. Liu, L. Xu, and S. Bai, Carbon, 68 (2014) 95. [8] S.S. Chen, S.T. Shiue, Y.H. Wu, and K.J. Cheng, Surface & Coatings Technology, 202 (2007) 798. [9] K.M. Krishna, Y. Nukaya, T. Soga, T. Jimbo, and M. Umeno, Solar Energy Materials and Solar Cells, 65 (2001) 163. [10] R.N. Basu, O. Altin, M.J. Mayo, C.A. Randall, and S. Eser, Journal of The Electrochemical Society, 148 (2001) A506. [11] H. Mohammadia and K. Mequanint, Medical Engineering & Physics, 33 (2011) 131. [12] A. Kluba, D. Bociaga, and M. Dudek, Diamond and Related Materials, 19 (2010) 533. [13] M. Umeno and S. Adhikary, Diamond and Related Materials, 14 (2005) 1973. [14] X.M. Tiana, M. Rusop, Y. Hayashi, T. Soga, T. Jimbo, and M. Umeno, Solar Energy Materials and Solar Cells, 77 (2003) 105. [15] A. Czyzniewski, Surface and Coatings Technology, 203 (2009) 1027. [16] K.M. Krishna, M. Umeno, Y. Nukaya, T. Soga, and T. Jimbo, Applied Physics Letters, 77 (2000) 1472. [17] H.W. Kroto, J.R. Heath, S.C. O''Brien, R.F. Curl, and R.E. Smalley, Nature, 318 (1985) 162. [18] S. Saito and A. Oshiyama, Physical Review Letters, 66 (1991) 2637. [19] H. Zhu, J. Wei, K. Wang, and D. Wu, Solar Energy Materials and Solar Cells, 93 (2009) 1461. [20] A.F. Hebard, M.J. Rosseinsky, R.C. Haddon, D.W. Murphy, S.H. Glarum, T.T.M. Palstra, A.P. Ramirez, and A.R. Kortan, Nature, 350 (1991) 600. [21] S. Iijima, Nature, 354 (1991) 56. [22] R.L. McCreery, Chemical Reviews, 108 (2008) 2646. [23] V.S. Muralidharan and A. Subramania, “Nanoscience and Technology,” Ane Books Pvt. Ltd., New Delhi, India (2009). [24] A. Merkoci, Microchimica Acta, 152 (2006) 157. [25] K.S. Novoselov, A. K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science, 306 (2004) 666. [26] A.K. Geim and K.S. Novoselov, Nature Materials, 6 (2007) 183. [27] J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, and S. Roth, Nature, 446 (2007) 60. [28] R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, and A.K. Geim, Science, 6 (2008) 1308. [29] J.H. Chen, C. Jang, S. Xiao, M. Ishigami, and M.S. Fuhrer, Nature Nanotechnology, 3 (2008) 206. [30] A. K. Geim, Science, 324 (2009) 1530. [31] K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi, and B.H. Hong, Nature, 457 (2009) 706. [32] F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, and K.S. Novoselov, Nature Materials, 6 (2007) 652. [33] N. Mohanty and V. Berry, Nano Letters, 8 (2008) 4469. [34] H.B. Heersche, P.J. Herrero, J.B. Oostinga, L.M.K. Vandersypen, and A.F. Morpurgo, Nature, 446 (2007) 56. [35] C. Xie, P. Lv, B. Nie, J. Jie, X. Zhang, Z. Wang, P. Jiang, Z. Hu, L. Luo, Z. Zhu, L. Wang, and C. Wu, Applied Physics Letters, 99 (2011) 133113. [36] M.L. Hitchman and K.F. Jensen, “Chemical Vapor Deposition,” Academic Press, San Diego, U.S.A. (1993). [37] M.J. Jackson, “Microfabrication and Nanomanufacturing,” CRC Press, Florida, U.S.A. (2006). [38] P. Delhaes, Carbon, 40 (2002) 641. [39] H.O. Pieson, “Handbook of Chemical Vapor Deposition,” 2nd, Noyes, New York, U.S.A. (1999). [40] M. Ohring, “Materials Science of Thin Films,” 2nd Ed., Academic Press, San Diego, U.S.A. (2002). [41] A. Pfrang, Y.Z. Wan, and T. Schimmel, Carbon, 48 (2010) 921. [42] Y. S. Han and J. Y. Lee, Electrochim. Acta, 48 (2003) 1073. [43] Y. S. Ding, W. N. Li, S. Iaconetti, X. F. Shen, J. DiCarlo, F. S. Galasso, and S. L. Suib, Surf. Coat. Technol., 200 (2006) 3041. [44] C. A. Taylor and W. K. S. Chiu, Surf. Coat. Technol., 168 (2003) 1. [45] W. N. Li, Y. S. Ding, S. L. Suib, J. F. DiCarlo, and F. S. Galasso, Surf. Coat. Technol., 190 (2005) 366. [46] C. Y. Lin, L. H. Lai, Y. X. Liu, S. T. Shiue, and H. Y. Lin, J. Electrochem. Soc., 158 (2011) D445. [47] L. H. Lai and S. T. Shiue, Surf. Coat. Technol., 215 (2013) 161. [48] L. H. Lai, H. C. Li, S. T. Shiue, T. J. Yang, and H. Y. Lin, ECS J. Solid State Sci. Technol., 2 (2013) N80. [49] Propane Gas Association of Canada, Propane & The Environment, [50] M. Szwarc, J. Chem. Phys., 17 (1949) 505. [51] E. J. Cukauskas, W. L. Carter, and S. B. Qadri, J. Appl. Phys., 57 (1985) 2538. [52] T. Otani and M. Hirata, Thin Solid Films, 442 (2003) 44. [53] R. P. Parikh and R. A. Adomaitis, J. Cryst. Growth, 286 (2006) 259. [54] V. Woods and N. Dietz, Mater. Sci. Eng. B, 127 (2006) 239. [55] M. Jurzecka, S. Kluska, S. Jonas, H. Czternastek, and K. Zakrzewska, Vacuum, 82 (2008) 1128. [56] M. H. Kang, D. S. Kim, A. Ebong, B. Rounsaville, A. Rohatgi, G. Okoniewska, and J. Hong, J. Electrochem. Soc., 156 (2009) H495. [57] S. Hofmann, B. Kleinsorge, C. Ducati, A. C. Ferrari, and J. Robertson, Diam. Relat. Mater., 13 (2004) 1171. [58] V. I. Merkulov, M. A. Guillorn, D. H. Lowndes, and M. L. Simpson, Appl. Phys. Lett., 79 (2001) 1178. [59] L. H. Lai, S. E. Chiou, H. C. Hsueh, S. T. Shiue, ECS J. Solid State Sci. Technol., 2 (2013) M44. [60] B.D. Cullity and S.R. Stock, “Elements of X-ray Diffraction,” 3rd Ed., Prentice Hall, New Jersey, U.S.A. (2001). [61] R.L. Mccreery, “Raman Spectroscopy for Chemical Analysis,” John Wiley and Sons, New York, U.S.A. (2000). [62] A.C. Ferrari and J. Robertson, Physical Review B, 61 (2000) 14095. [63] F. Tuinsta and J.L. Koenig, The Journal of Chemical Physical, 53 (1970) 1126. [64] P.C. Eklund, J.M. Holden, and R.A. Jishi, Carbon, 33 (1995) 959. [65] J.F. Moulder, W.F. Stickle, P.E. Sobol, J. Chastain, and K.D. Bomben, “Handbook of X-ray Photoelectron Spectroscopy,” Perkin-Elmer Corporation, Minnesota, U.S.A. (1992). [66] J. Kwon, Y.S. Kim, K. Yoon, S. M. Lee, and S.I. Park, Ultramicroscopy, 105 (2005) 51. [67] 汪建民主編,材料分析,中國材料科學學會 (2008)。 [68] T. Young, Philosophical Transactions of the Royal Society of London, 95 (1805) 65. [69] Instruction manual of the Four-point Probe (Model: QT-50), Quatek Corporation Limited, Napson Corporation, Japan. [70] C.N. Wei, “Applications of Residual Gas Analyzer in Vacuum Facilities,” Master Thesis, Department of Mechanical Engineering Chung Yuan University, Taiwan (2005). [71] X. Bourrat, J. Lavenac, F. Langlais, and R. Naslain, Carbon, 39 (2001) 2376. [72] N. Shimodaira and A. Masui, J. Appl. Phys., 92 (2002) 902. [73] A. C. Ferrari and J. Robertson, Phys. Rev. B, 63 (2001) 121405-1. [74] A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, and U. Poschl, Carbon, 43 (2005) 1731. [75] L. G. Cancado, K. Takai, T. Enoki, M. Endo, Y. A. Kim, H. Mizusaki, A. Jorio, L. N. Coelho, R. Magalhaes-Paniago, and M. A. Pimenta, Appl. Phys. Lett., 88 (2006) 163106-1. [76] H. S. Zhang and K. Komvopoulos, J. Appl. Phys., 106 (2009) 093504-1. [77] K. Matsumoto, Y. Hirata, S. Sameshima, and N. Matsunaga, J.Ceram. Soc. Jpn., 116 (2008) 486. [78] H. Yokomichi, A. Masuda, and N. Kishimoto, Thin Solid Films, 395 (2001) 249. [79] P. Merel, M. Tabbal, M. Chaker, S. Moisa, and J. Margot, Appl. Surf. Sci., 136 (1998) 105. [80] G. L. Du, N. Celini, F. Bergaya, and F. Poncin-Epaillard, Surf. Coat. Technol., 201 (2007) 5815. [81] S. Kaciulius, Surf. Interface. Anal., 44 (2012) 1155. [82] Y. Mizokawa, T. Miyasato, S. Nakamura, K. M. Geib, and C. W. Wilmsen, Surf. Sci., 182 (1987) 431. [83] Y. Mizokawa, T. Miyasato, S. Nakamura, K. M. Geib, and C. W. Wilmsen, J. Vac. Sci. Technol., A, 5 (1987) 2809. [84] J. C. Lascovich and S. Scaglione, Appl. Surf. Sci., 78 (1994) 17. [85] J. C. Lascovich, R. Giorgi, and S. Scaglione, Appl. Surf. Sci., 47 (1991) 17. [86] A. Mezzi and S. Kaciulis, Surf. Interface. Anal., 42 (2010) 1082. [87] J. Sobol-Antosiak and W. S. Ptak, Mater. Letters, 56 (2002) 842. [88] L. Ostrovskaya, V. Perevertailo, V. Ralchenko, A. Dementjev, and O. Loginova, Diamond and Related Materials, 11 (2002) 845. [89] R.N. Wenzel, The Journal of Physical Chemistry, 53 (1949) 1466. [90] S. Adachi, T. Arai, and K. Kobayashi, Journal of Applied Physics, 80 (1996) 5422. [91] T.H. Fang and W.J. Chang, Applied Surface Science, 220 (2003) 175. [92] J.H. Son, M.Y. Park, and S.W. Rhee, Thin Solid Films, 335 (1998) 229. [93] P. Y. Chen, S. T. Shiue, and H. Y. Lin, Thin Solid films, 518 (2010) 2883. [94] A. Becker and K. J. Huttinger, Carbon, 36 (1998) 213. [95] L. H. Lai, K. J. Huang, S. T. Shiue, J. T. Chang, and J. L. He, J. Electrochem. Soc., 159 (2012) D367. [96] L. S. Kershenbaum and J. Martin, A. I. Ch. E. Journal, 13 (1967) 148.
This study investigates the effects of C3H8/(C3H8+NH3) ratio on the properties of carbon films prepared by thermal chemical vapor deposition. We also investigate the effects of mass flow rate, deposition temperature and working pressure on the deposition rates of carbon films. The thickness, microstructure, surface property, electrical property of carbon films and residual gas of process were investigated by field emission scanning electron microscopy, X-ray diffraction spectrometer, Raman scattering spectrometer, X-ray photoelectron spectrometer, atomic force microscopy, contact angle meter, four-points probe, and residual gas analyzer. Experimental results indicate that the deposition rate raises with increasing the C3H8/(C3H8+NH3) ratio, residence time, deposition temperature, and working pressure. About sixteen NH3 molecules will suppress one C3H8 molecule to form the carbon film. Moreover, the pyrolysis of C3H8/NH3 mixtures is dominated by about a first order process, which is arisen from the adsorption of main product gases methane (CH4), acetylene (C2H2), and ethylene (C2H4) on the silica glass plate substrate. The activation energy of this process is 439 kJ/mol. The surface roughness and electrical resistivity of carbon films increase with increasing the C3H8/(C3H8+NH3) ratio, but the crystallinity, degree of ordering, size of mean crystallite (La and Lc), content of sp2 C=C bonding and water contact angle of carbon films decrease. Finally, the results of thermal CVD carbon deposition using C3H8/NH3 mixtures are compared with those using CH4/NH3, C2H2/NH3, C2H4/NH3, and C3H8/N2 mixtures.

本篇論文以熱化學氣相沉積法製備碳薄膜,探討不同C3H8/(C3H8+NH3)比例對碳薄膜性質之影響。並探討不同氣體總流量、沉積溫度和工作壓力對沉積速率的影響。利用場發射掃描式電子顯微鏡、X光繞射儀、拉曼散射光譜儀、X光光電子能譜儀、原子力顯微鏡、接觸角量測儀、四點探針儀和殘留氣體分析儀量測碳薄膜的沉積厚度、微觀結構、表面特性、電學性質和製程上之殘留氣體。實驗結果發現,碳薄膜的沉積速率會隨著C3H8/(C3H8+NH3)比例、停留時間、沉積溫度以及工作壓力的增加而上升。在沉積過程中,16個氨氣會抑制1個丙烷形成碳薄膜。碳薄膜主要是由氣體中的CH4、C2H2和C2H4裂解沉積於石英玻璃平板上,其為1次方反應過程。此實驗之活化能約為439 kJ/mol。碳薄膜的表面粗糙度與電阻率會隨著C3H8/(C3H8+NH3)比例增加而上升;而碳薄膜的結晶度、結構有序程度、平均晶粒大小 (La和Lc)、sp2 C=C鍵結的相對含量與水接觸角會隨著C3H8/(C3H8+NH3)比例增加而下降。最後,將本實驗丙烷/氨氣與甲烷/氨氣、乙炔/氨氣、乙烯/氨氣和丙烷/氮氣之碳薄膜性質互相比較。
其他識別: U0005-0107201409382800
Rights: 不同意授權瀏覽/列印電子全文服務
Appears in Collections:材料科學與工程學系

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-103-7101066038-1.pdf7.94 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.