Please use this identifier to cite or link to this item:
http://hdl.handle.net/11455/91970
DC Field | Value | Language |
---|---|---|
dc.contributor | Fu-Hsing Lu | en_US |
dc.contributor | 呂福興 | zh_TW |
dc.contributor.author | 陳祺涵 | zh_TW |
dc.contributor.author | Chi- Han Chen | en_US |
dc.contributor.other | 材料科學與工程學系所 | zh_TW |
dc.date | 2014 | zh_TW |
dc.date.accessioned | 2015-12-11T09:06:09Z | - |
dc.identifier | U0005-2811201416183613 | zh_TW |
dc.identifier.citation | 1. C. N. George, J. K. Thomas, R. Jose, H. Padma Kumar, M.K. Suresh,V. R. Ku-mar, P.R. S. Wariar, and J. Koshy, “Synthesis and characterization of nanocrystal-line strontium titanate through a modified combustion method and its sintering and dielectric properties,” J. Alloys Compd , 486 (2009) 711. 2. A. K. Tagantsev, V.O. Sherman, K.F. Astafiev, J. Venkatesh, and N. Setter, “Fer-roe-lectric materials for microwave tunable applications,” J. Electroceram, 11 (2006) 5. 3. W. Xu., L. Zheng, H. Xin, and C. Lin, “Hydrothermal BaTiO3 Thin Films on Ti-Covered Silicon: Characterization and Growth Mechanism,” J. Electrochem. Soc, 143 (1996) 1133. 4. D. E. Rase and R. Roy, “Phase equilibria in the systemBaO-TiO2, J.Chem. Phys., 19, 1951, 33-40. 5. H. Kishi, Y. Mizuno, H. Chazono, “Base-metal electrode-multilayer ceramic ca-pacitors: past, present and future perspectives”, Jpn. J. Appl. Phys., 42 (2003) . 6. P. Li, T-M. Lu and H. Bakhru, “High charge storage in amorphous BaTiO3 thin films”, Appl. phys. Lett., 58 (1991), 2639. 7. G. H. Heartling, “Ferroelectric thin films for electronic applications“, J. Vac. Sci. Technol. A, 9 (1991), 414. 8. J. Nowotny, M. Rekas, “Positive temperature coefficient of resistivity for BaTiO3-based materials”, Ceram. Int., 17 (1991), 227. 9. D.S. Lee, H.J. Woo, D.Y. Park, J. Ha, C.S. Hwang, and E. Yoon, “Effects of the microstructure of platinum electrode on the oxidation behavior of TiN diffusion barrier layer,” Jpn. J. Appl. Phys, 42 (2003) 630. 10. M. Yoshimura, S.-E. Yoo, M. Hayashi, and N.Ishizawa, “Preparation of BaTiO3 thin film by hydrothermal electrochemical method”, Jpn. J. Appl. Phys., 28 (1989), 2007. 11. 詹佩諠,電化學陽極氮化法於異質基材上製備鈦酸鋇膜之研究,國立中興大學材料科學與工程學系碩士論文,(2004)。 12. 余錦智,以低溫水熱法及化學電池作用於氮化鈦膜上製備鈦酸鋇膜之研究,國立中興大學材料科學與工程學系碩士論文,(2005)。 13. 鄧煥平,以低溫水熱-化學電池於鍍氧化鋯膜矽基材上製備鋯酸鋇薄膜之研究,國立中興大學材料科學與工程學系碩士論文,(2007). 14. 趙玲夙,以低溫水熱-化學電池法於鍍鈦膜矽基材上製備具有生物活性之奈米NaHTi3O7薄膜研究,國立中興大學材料科學與工程學系碩士論文,(2009). 15. 蔡迪佑,以水熱-化學電池法於氮化鈦膜上製備鈦酸鋇膜及其成長動力學分析,國立中興大學材料科學與工程學系碩士論文,(2010). 16. 林佳君,以水熱-化學電池法於不同表面形貌及電阻率之TiN/Si上製備SrTiO3膜之研究,國立中興大學材料科學與工程學系碩士論文,(2011). 17. 蔡右相,水熱-化學電池法中以低Sr離子濃度生成SrTiO3薄膜之研究,國立中興大學材料科學與工程學系碩士論文,(2013). 18. B.D. Cullity and S.R. Stock, Elements of X-Ray Diffraction. Prentice-Hall,New York, (2001) 367. 19. R.E. Reed-Hill, and R. Abbaschian, Physical metallurgy principles, Third edition, PWS publishing company, Boston (1994) 190. 20. 呂福興,余錦智,揭由志,詹佩諠,伍組聰,製備鈦酸鋇的方法,中華民國發明專利,證書證號 I261633。 21. 呂福興,鄧煥平,揭由志,鋯酸鋇膜之製造方法,2010,中華民國發明專利,證書證號 I321168。 22. Y.-C. Chieh, C.-C. Yu, and F.-H. Lu, “Epitaxial growth of BaTiO3 films on TiN/Si substrates by a hydrothermal-galvanic couple method,” Appl. Phys. Lett. 90 (2007) 032904. 23. 田福助,電化學-基本原理與應用,五洲出版社,第21-24頁,民國八十三年。 24. E. Hummel, Electronic Properties of Materials. 3rd ed. Springer-Verlag, New York, (2001) 186. 25. W.D. Callister Jr., Material science and engineering: An introduction,fourth edi-tion, John Wiley & son, New York (1997) 633. 26. C.K. Tan, G.K.L. Goh, and G.K. Lau, “Growth and dielectric properties of Ba-TiO3 thin films prepared by the microwave-hydrothermal method,” Thin Solid Films 516 (2008) 5545. 27. R.Z. Hou, A. Wu, and P.M. Vilarinho, “Low-temperatue hydrothermal deposition of BaxSr1-xTiO3 thin films on flexible polymeric substrates for embedded applica-tions,” Chem. Mater. 21 (2009) 1214. 28. Svante Arrhenius, “Electrolytic Dissociation” J.Am.hem.Soc.,1912,34(4). | zh_TW |
dc.identifier.uri | http://hdl.handle.net/11455/91970 | - |
dc.description.abstract | This research is to synthesize BaTiO3 films on TiN/Si substrate by the hydrothermal-galvanic couple method. Investigated BaTiO3 films with different [Ba2+] concentration compared with those synthesized by hydrothermal-galvanic couple method. BaTiO3 films were fabricated by using various concentrations of Ba(CH3COO)2 mixed with 2 M NaOH reaction solutions at 80°C for 60 minutes. According to different Ba(CH3COO)2 concentrations, characteristics of voltage and current , the relative intensity, the average grain size were discussed. The influence of [Sr2+] in SrTiO3 were also be compared. While Ba(CH3COO)2 concentration is higher than 0.04 M, spontaneous voltage and current between TiN and platinum electrodes were observed apparently which confirmed the existence of galvanic couple in this system. XRD identify the cubic phase crystalline BaTiO3 films. The BaTiO3 relative intensity at different concentration [Ba2+] from hydrothermal-galvanic couple is higher than a single hydrothermal method. FE-SEM observed morphology and cross-sectional structure of as-deposited TiN /Si. The continuous dense BaTiO3 covered over TiN / Si at [Ba2+] concentration above 0.04 M by hydrothermal-galvanic couple method. Grain size and thickness of the BaTiO3 film was decreased with [Ba2+]concentrations decreased significantly. When the concentration of Ba(CH3COO)2 increased from 0.04 M to 0.5 M, the die-lectric constant of BaTiO3 films decreased. The dielectric constant of BaTiO3 films at 10 kHz obtained at 0.04 M Ba(CH3COO)2 was 179 and dielectric loss was 3.18. Another part of this study, the experimental results and SrTiO3 with different strontium ions concentration were compared. BaTiO3, and SrTiO3 have the same structure. However, the maximum current, the quantity of electric charge, energy den-sity, and relative intensity and the data analysis of different concentrations of [Ba2+] is much lower than [Sr2+] under the same basic conditions. SrTO3 film can be prepared at low [Sr2+] concentration of 0.0001 M, but [Ba2+] is at least 0.04 M. | en_US |
dc.description.abstract | 本研究利用水熱-化學電池法於TiN/Si基材上製備鈦酸鋇膜,探討溶液中鋇離子[Ba2+]濃度對BaTiO3膜成長之影響,並以水熱法為對照組作比較,此為文獻中從未為探討過的主題。以不同濃度之Ba(CH3COO)2與2M NaOH混合液作為反應溶液,於80°C,反應60分鐘製備鈦酸鋇薄膜。針對不同Ba(CH3COO)2濃度條件,BaTiO3膜成長過程中之電流、電壓及電量,以及XRD相對強度、平均晶粒尺寸及膜的變化趨勢進行探討及並將結果與鍶離子對鈦酸鍶之影響之趨勢比較。 以LabView程式監控反應過程中電壓及電流變化,當Ba(CH3COO)2濃度高於0.04 M以上,水熱-化學電池法在反應過程中可監測到明顯且不同的自發電位差及電流變化,顯示此反應系統具有伽凡尼即化學電池之機制。利用XRD鑑定不同醋酸鋇濃度濃度生成鈦酸鋇薄膜之結晶相,在不同鋇離子濃度條件下,水熱-化學電池法所得之BaTiO3 XRD繞射峰相對強度明顯較單一水熱法要高。FE-SEM下觀測反應前後TiN/ Si表面及橫截面微結構形貌,水熱-化學電池法在[Ba2+]濃度0.04 M以上之條件下,生成之鈦酸鋇已覆蓋滿TiN/Si上,而形成一連續緻密的BaTiO3膜。BaTiO3膜的晶粒大小及膜厚均隨[Ba2+]濃度有明顯降低趨勢。介電常數方面,醋酸鋇濃度從0.04 M增加到0.5 M,BaTiO3膜介電常數增加,在0.04 M 醋酸鋇所生成之BaTiO3薄膜在10 kHz下之介電常數為179、介電損失為3.18。 本研究另一部分是將實驗結果與不同濃度鍶離子對鈦酸鍶膜製備的結果進行比較。鈦酸鋇與鈦酸鍶兩者結構相近,但經比較後發現在最大電流、總電量、能量密度、及相對強度,數據分析中,不同濃度[Ba2+]之結果均比[Sr2+]的結果要來得低,在相同鹼性條件下,[Sr2+]可在0.0001 M的低濃度下製備出鈦酸鍶膜,但[Ba2+]則至少需要0.04 M。 | zh_TW |
dc.description.tableofcontents | 致謝 摘要 I Abstract III 目次 V 表目次 VII 圖目次 VIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 3 1.3 研究目的 2 第二章 文獻回顧與理論背景 3 2.1 水熱-化學電池法製備氧化膜之文獻回顧 3 第三章 研究方法 9 3.1 實驗流程 9 3.2 TiN/Si基材之製備 10 3.3 水熱化學電池法製備鈦酸鋇薄膜 10 3.4 分析儀器 12 3.4.1 X光繞射儀 12 3.4.2 場發射式掃描式電子顯微鏡 12 3.4.3 電感電容電阻量測儀(LCR meter) 12 3.5 鈦酸鋇平均晶粒尺寸計算 12 第四章 結果 14 4.1 不同鋇離子濃度以水熱-化學電池法製備鈦酸鋇膜之電流、電壓分析 14 4.2 水熱-化學電池法鈦酸鋇薄膜結晶相分析 20 4.3 水熱-化學電池法製備鈦酸鋇膜微結構及膜厚分析 24 4.4 水熱法製備鈦酸鋇薄膜 33 4.5 生成BaTiO3膜介電性質分析 38 第五章 討論 41 5.1 鋇離子濃度對生成BaTiO3之影響 41 5.2 水熱-化學電池法與水熱法製備鈦酸鋇薄膜之比較 44 5.3 不同濃度Ba和Sr離子在水熱-化學電池法生成BaTiO3、SrTiO3之探討 47 第六章 結論 54 致謝 3 摘要 I Abstract III 目次 V 表目次 VII 圖目次 VIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 3 1.3 研究目的 2 第二章 文獻回顧與理論背景 3 2.1 水熱-化學電池法製備氧化膜之文獻回顧 3 第三章 研究方法 9 3.1 實驗流程 9 3.2 TiN/Si基材之製備 10 3.3 水熱化學電池法製備鈦酸鋇薄膜 10 3.4 分析儀器 12 3.4.1 X光繞射儀 12 3.4.2 場發射式掃描式電子顯微鏡 12 3.4.3 電感電容電阻量測儀(LCR meter) 12 3.5 鈦酸鋇平均晶粒尺寸計算 12 第四章 結果 14 4.1 不同鋇離子濃度以水熱-化學電池法製備鈦酸鋇膜之電流、電壓分析 14 4.2 水熱-化學電池法鈦酸鋇薄膜結晶相分析 20 4.3 水熱-化學電池法製備鈦酸鋇膜微結構及膜厚分析 24 4.4 水熱法製備鈦酸鋇薄膜 33 4.5 生成BaTiO3膜介電性質分析 38 第五章 討論 41 5.1 鋇離子濃度對生成BaTiO3之影響 41 5.2 水熱-化學電池法與水熱法製備鈦酸鋇薄膜之比較 44 5.3 不同濃度Ba和Sr離子在水熱-化學電池法生成BaTiO3、SrTiO3之探討 47 第六章 結論 54 參考文獻 56 | zh_TW |
dc.language.iso | zh_TW | zh_TW |
dc.rights | 同意授權瀏覽/列印電子全文服務,2017-08-31起公開。 | zh_TW |
dc.subject | 水熱-化學電池法 | zh_TW |
dc.subject | 鈦酸鋇 | zh_TW |
dc.subject | 氮化鈦 | zh_TW |
dc.subject | hydrothermal-galvanic couple method | en_US |
dc.subject | Barium titanate | en_US |
dc.subject | Titanium nitride | en_US |
dc.title | 以低Ba離子濃度在水熱-化學電池法生成BaTiO3薄膜機制之探討 | zh_TW |
dc.title | Synthesis of BaTiO3 thin films at low Ba+2 concentrations by hydrothermal-galvanic couple method | en_US |
dc.type | Thesis and Dissertation | en_US |
dc.date.paperformatopenaccess | 2017-08-31 | zh_TW |
dc.date.openaccess | 2017-08-31 | - |
item.openairetype | Thesis and Dissertation | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.languageiso639-1 | zh_TW | - |
item.grantfulltext | restricted | - |
item.fulltext | with fulltext | - |
item.cerifentitytype | Publications | - |
Appears in Collections: | 材料科學與工程學系 |
Files in This Item:
File | Size | Format | Existing users please Login |
---|---|---|---|
nchu-103-5100066026-1.pdf | 5.05 MB | Adobe PDF | This file is only available in the university internal network |
TAIR Related Article
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.