Please use this identifier to cite or link to this item:
標題: 以噴射式大氣電漿於 TiN/Si 基材上製備 BaTiO3 膜之特性研究
Synthesis of barium titanate films on TiN/Si substrates by atmospheric pressure plasma jet
作者: 孫毅天
I-Tien Sun
關鍵字: 無;no
引用: 1. Lide, David R, CRC handbook of chemistry and physics, Baker & Taylor Books,London, (2007). 2. 汪建民,陶瓷技術手冊(上),中華民國粉末冶金協會,第十三章:介電陶瓷(傅勝利),第 409~ 413 頁,民國八十三年。 3. Y.-M. Chiang, D. Birnie ?, and W. D. Kingery, Physical Ceramics, John Wiley & Sons, Inc., New York, (1997) 42. 4. J. Schreckenbach, F. Schlotting, G. Marx, W. M. Kriven, O. O. Popoola, M. H. Jilavi, and S.D. Brown, “Preparation and microstructure characterization of anodic spark deposited barium titanate conversion layers,” J. Mater. Res., 14 (1999) 1437. 5. D.S. Lee, H.J. Woo, D.Y. Park, J. Ha, C.S. Hwang, and E. Yoon, “Effects of the microstructure of platinum electrode on the oxidation behavior of TiN diffusion barrier layer,” Jpn. J. Appl. Phys., 42 (2003) 630. 6. L. Predaa, L. Courselleb, B. Despaxb, J. Bandetc, A. Ianculescud, “Structural characteristics of RF-sputtered BaTiO3 thin films,” Thin Solid Films, 389 (2001) 43. 7. T. Chiba, K. I. Itoh and O. Mastumoto, “Deposition of BaTiO3 thin films by plasma MOCVD”, Thin Soild Films, 300 (1997) 6. 8. E. B. Slamovich, I. A. Aksay, “Structure evolution in hydrothermal processed (<100C) BaTiO3 films,” J. Am. Ceram. Sci., 79 (1996) 239. 9. C. J. Yang, D. Y. Tsai, P. H. Chan, C. T. Wu, F. H. Lu, “Hydrothermal–galvanic couple synthesis of directionally oriented BaTiO3 thin filmson TiN-coated substrates,” Thin Soild Films, 542 (2013) 108. 10. J. L. Zeng, H. P. Teng, F. H. Lu, “Electrochemical deposition of barium titanate thin films on TiN/Si substrates,” Surf. Coat. Technol., 231 (2013) 297. 11. W. H. Zhang, L. Chen, Y. T. Tao, W. H. Zhang, J. Chen, J. X. Zhang, “Raman study of barium titanate with oxygen vacancies,” Physica B, 406 (2011) 4630. 12. H. M. Mott-Smith, “Irving Langmuir''s coining of 'plasma' was described by Harold M. Mott-Smith in a letter,” Nature, 233 (1971) 219. 13. A. Grill, “Cold Plasma Materials Fabrication:From Fundamentals to Applications”, Wiley-IEEE Press, New York. 1994. 14. M. Goldman and R. S. Sigmond, “Corona and insulation,” IEEE Trans.Elect. Insulation., 17 (1982) 90. 15. B. Eliasson and U. Kogelschatz, “Nonequilibrium volume plasma chemical processing,” IEEE Trans. Plasma Sci., 19 (1991) 1063. 16. J. Y. Jeong, S. E. Babayan, V. J. Tu, J. Park, R. F. Hicks, G. S. Selwyn, “Etching materials with an atmospheric-pressure plasma jet,” Plasma Source Sci. Technol., 7 (1998) 282. 17. M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, New York, 1994. 18. A. Schutze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn, R. F. Hicks,” The Atmospheric-Pressure Plasma Jet: A Review and Comparison to Other Plasma Sources,” IEEE Trans., 26 (1998) 1685. 19. E. E. Kunhardt, “Electrical breakdown of gases: The prebreakdown stage,” IEEE Trans., 8 (1980) 130. 20. R. W. Smith, D. Wei, and D. Apelian, “Thermal plasma materials processing— Applications and opportunities,” Plasma Chem. Plasma Process, 9 (1989) 135. 21. E. Neagu, “The influence of annealing time on thermally stimulated discharge current of corona-charged polymers,” Mater. Lett., 21 (1994) 119. 22. G. S. Selwyn, H. W. Herrmann, J. Park, I. Henins. “Materials processing using an atmospheric pressure,” Contrib. Plasma Phys., 6 (2001) 640. 23. S. E. Babayan, J. Y. Jeong, V. J. Tu, J. Park, G. S. Selwyn, and R. F. Hicks, “Deposition of silicon dioxide films with an atmosphericpressure plasma jet,” Plasma Source Sci., 7 (1998) 286. 24. A. Kuwabara, S. I. Kuroda, H. Kubota, “Preparation of a CVD thin film by an atmospheric pressure low temperaturesurface discharge plasma torch,” Plasma Sources Sci.Technol., 15 (2006) 328. 25. K. M. Chang, S. H. Huang, C. J. Wu, W. L. Lin, W. C. Chen, C. W. Chi, J. W. Lin, C. C. Chang, “Transparent conductivity indium-doped zinc oxide films prepared by atmospheric pressure plasma jet,” Thin Solid Films, 519 (2011) 5114. 26. C. Huang, C. H. Liu, C. H. Su, W. T. Hsu, S. Y. Wu, “Investigation of atmospheric- pressure plasma deposited SiOx films on polymeric substrate,” Thin Solid Films, 517 (2009) 5141. 27. C. Huang, S. Y. Wu, Y. C. Chang, “Synthesis of organosilicon films on polycarbonate by means of low-temperature atmospheric-pressure plasma,” IEEE., 38 (2010) 1101. 28. T. Aita, K. Ogawa, Y. Saito, Y. Sumiyoshi, T. Higuchi, S. Sato, “Microstructures of SiO2 and TiOX films deposited by atmospheric pressure inductively coupled micro-plasma jet,” Surf. Coat. Technol., 205 (2010) 861. 29. Y. S. Lin, D. J. Lin, L. Y. Chiu, S. W. Lin, “Lithium electrochromism of atmospheric pressure plasma jet-synthesized NiOxCy thin films,” J. Solid State Electrochem., 16 (2012) 2581. 30. Y. S. Lin, T. H. Tsai, S. W. Tien, “Atmospheric pressure plasma jet-synthesized electrochromic organomolybdenum oxide thin films for flexible electrochromic devices,” Thin Solid Films, 529 (2013) 248. 31. Z. Liu, Q. Chen, Z. Wang, L. Yang, C. Wang, “Production of titanium dioxide powders by atmospheric pressure plasma jet,” Physics Procedia, 18 (2011) 168. 32. H. Huang and X. Yao, “Preparation of BaTiO3 thin films by mist plasma evaporation on MgO buffer layer,” Ceram. Int., 30 (2004) 1535. 33. C. L. He, J. L. Zhang, J. M. Wang, G. F. Ma, D. L. Zhao, Q. K. Cai, “Effect of structural defects on corrosion initiation of TiN nanocrystalline films” Appl. Surf. Sci., 276 (2013) 667. 34. S. Wada, M. Narahara, T. Hoshina, H. Kakemoto, T. Tsurumi, “Preparation of nm- sized BaTiO3 particles usinga new 2-step thermal decomposition of barium titanyl oxalate.” J. Mater. Sci., 38 (2003) 2655. 35. T. Aita, K. Ogawa, Y. Saito, Y. Sumiyoshi, T. Higuchi, S. Sato, “Microstructures of SiO2 and TiOX films deposited by atmospheric pressureinductively coupled micro-plasma jet.” Surf. Coat. Technol., 205 (2010) 861. 36. S. Lee and C. A. Randall, “Modified Phase Diagram for the Barium Oxide– Titanium DioxideSystem for the Ferroelectric Barium Titanate.” J. Am. Ceram. Soc., 90 (2007) 2589. 37. Y. Saito, H. Sato, Y. Sakabe, “CO2 recovery at high temperatures using Ba2TiO4.” J. Chem. Eng. Jpn., 41 (2008) 441. 38. A. Lotnyk, S. Senz, D. Hesse, “Formation of BaTiO3 thin films from (110) TiO2 rutile single crystals and BaCO3 by solid state reactions,” Solid State Ionics, 177 (2006) 429. 39. E. K. Evangelou, N. Konofaos, X. Aslanoglou, S. Kennou, and C. B. Thomas, “ Characterization of the BaTiO3 thin films on p-Si, ” Semiconductor Processing, 4 (2001) 305. 83 Mater. Sci. in 40. S. A. Nasser,“X-ray photoelectron spectroscopy study on the composition and structure of BaTiO3 thin films deposited on silicon,” Appl. Surf. Sci., 157 (2000) 14. 41. T. Chiba, K. I. Itoh, and O. Matsumoto,“Deposition of BaTiO3 thin films by plasma MOCVD,” Thin Solid Films, 300 (1997) 6. 42. R. Ayouchi, F. Martin, J. R. Ramos-Barrado, and D. Leinen,“Compositional, structural and electrical characterization of barium titanate thin films prepared on fused silica and Si(111) by spray pyrolysis,” Surf. Interface Anal., 30 (2000) 565. 43. C. Miot, E. Husson, C. Proust, R. Erre, and J. P. Coutures,“Residual carbon evolution in BaTiO3 ceramics studied by XPS after ion ething,” J. Eur. Ceram. Soc., 18 (1998) 339. 44. E. K. Evangelou, N. Konofaos, X. Aslanoglou, S. Kennou, and C. B. Thomas, “ Characterization of the BaTiO3 thin films on p-Si, ” Semiconductor Processing, 4 (2001) 305. 45. C. Miot, E. Husson, C. Proust, R. Erre, and J. P. Coutures,“Residual carbon evolution in BaTiO3 ceramics studied by XPS after ion ething,” J. Eur. Ceram. Soc., 18 (1998) 339. 46. Z. Tang, Z. Zhou, Z. Zhang,“Experimental study on the mechanism of BaTiO3- based PTC-CO gas sensor,” Sens. Actuators. B Chem., 93 (2003) 391. 47. M.T. Sebastian, Dielectric materials for wireless communication, Amsterdam, London, (2008) 11 48. A. Lotnyk, S. Senz, D. Hesse,“Formation of BaTiO3 thin films from (110) TiO2 rutile single crystals and BaCO3 by solid state reactions,” Solid State Ionics, 177 (2006) 429. 49. H. Huang, X. Yao, M. Wang, X. Wu,”BaTiO3 on LaNiO3 and Si thin films prepared 84 Mater. Sci. in by mist plasma evaporation,” J. Cryst. Growth., 263 (2004) 406. 50. C. R. Cho, M. S. Jang, S. Y. Jeong, S. J. Lee, B. M. Limb, “Ferroelectric properties of hydrothermally prepared BaTiO3, thin films on Si(100) substrates by low- temperature processing,” Mater. Lett., 23 (1995) 203. 51. H. Nakazawa, H. yamane, T. Hirai, “Metalorganic chemical vapor deposition of BaTiO3 films on MgO(100),” J. Appl. Phys., 30 (1991) 2200. 52. F. E. Kamel, P. Gonon, F. Jomni, “Electrical properties of low temperature deposited amorphous barium titanate thin films as dielectrics for integrated capacitors,” Thin Solid Films, 504 (2006) 201. 53. S. Ge, Z. Ning, Z. Dong, M. Shen, “Investigation on dielectric properties of polycrystalline BT/ST multilayer thin films,” 35 (2002) 906. 54. A. Trenczek-Zajac, M. Radecka, K. Zakrzewska, A. Brudnik, E. Kusior, S. Bourgeoisc, M.C. Marco de Lucasc, and L. Imhoff, “Structural and electrical properties of magnetron sputtered Ti(ON) thin films: The case of TiN doped in situ with oxygen,” J. Power Sources, 194 (2009) 93. 55. J. E. Kim, K. Ohshima, Y. H. Rim, Y. S. Yang, “In-situ size control and structural characterization of barium titanate nanocrystal prepared by crystallization of amorphous phase,” J. Cryst. Growth, 311 (2009) 3749. 56. K. Mudiyanselage, J. F. Weaver, and J. Szanyi, “Catalytic Decomposition of Ba(NO3)2 on Pt(111),” J. Phys. Chem. C, 115 (2011) 5903. 57. S.J. Penn, N.M. Alford, A. Templeton, X. Wang, M. Xu, M. Reece, and K. Schrapel, “Effect of porosity and grain size on the microwave dielectric properties of sintered alumina,” J. Am. Ceram. Soc., 80 (1997) 1885.
The aim of this work is to synthesize cubic barium titanate films on TiN-coated Si substrate by atmospheric pressure plasma jet (APPJ) using 0.025 M - 0.3 M Ba(NO3)2 with 0.05 M and 0.1 M Ti(NO3)4 as precursors. TiN films, acted as the buffer layer to make a single-phased BaTiO3. After the APPJ treatment, the as-deposited films were annealed in vacuum and air at 700C for 1 hr. The chemical structure and growth
mechanism of those films made by various precursor concentrations was also explored.
For comparison, synthesizing BaTiO3 on Si substrates were also investigated.
Using 0.025 M Ba(NO3)2 and 0.05 M Ti(NO3)4 as precursors, cubic BaTiO3 films were directly prepared without further annealing. Mixed phases of BaTiO3, Ba(NO3)2 and BaO were formed by using other precursor concentrations. After annealing, cubic BaTiO3 or BaTiO3/Ba2TiO4 mixed phases were obtained on TiN/Si substrates in vacuum. The composition and structure of those films were different by varying Ba2+ concentrations. In addition, BaTiO3 reacted with Si to form Ba2TiSi2O8 after annealing in either vacuum or air when Si was used as the substrates. TiN films played as the buffer layer to inhibit the formation of Ba2TiSi2O8. Compared to those annealed in air,the oxidation of TiN films and the formation of Ba2TiSi2O8 were suppressed after annealing in vacuum. The dielectric constant of cubic BaTiO3 films was 621 at 10 kHz and 138 at 100 kHz; the dielectric loss was 1.66 at 10 kHz and 0.87 at 100 kHz after
annealing in vacuum by using 0.05 M Ba(NO3)2 and 0.1 M Ti(NO3)4 as precursor. The dielectric constant and dielectric loss were higher than those reported in the literature.
The growth mechanisms of BaTiO3 films by APPJ were discussed by varying the reaction time. Cubic BaTiO3 particles were formed in the beginning. Increasing the reaction time yielded the formation of Ba(NO3)2 and BaO particles. After annealing at 700C for 1 hr, only cubic BaTiO3 particles were produced. In addition, Ba2TiO4 were formed when Ba2+ ions concentrations were higher than 0.075 M.

本研究主要以大氣電漿於 TiN/Si 基材上製備立方相 BaTiO3 膜,其中以 TiN膜做為緩衝層,以便生成單相的 BaTiO3。以 0.025 M - 0.3 M Ba(NO3)2 與 0.05 M及 0.1 M Ti(NO3)4 作為前驅物,以大氣電漿製備 BaTiO3 膜,並將反應後之試片分別經由真空及空氣氣氛中以溫度 700C,時間 1 小時的環境下退火。探討不同前驅物濃度對製備 BaTiO3 膜的影響,並探討膜內組成之化學結構及成長機制,同時利用 Si 基材做為對照組,利用大氣電漿製備 BaTiO3,並將反應後之試片經真空及空氣氣氛退火,探討不同基材及不同退火環境對大氣電漿製備 BaTiO3 膜的影響並比較其差異。

本研究發現,利用 0.025 M Ba(NO3)2 及 0.05 M Ti(NO3)4 作為前驅物可直接利用大氣電漿製程製備出立方相 BaTiO3。其餘製程參數下膜內除 BaTiO3 外亦含有 Ba(NO3)2、BaO 之混合相,以 TiN/Si 做為基材,並利用真中空以溫度 700C時間 1 小時之退火處理後可得接近計量比之立方相 BaTiO3 或 BaTiO3/Ba2TiO4 混相,造成退火後膜內組成結構變化的原因為前驅物中鋇離子濃度造成之影響;若以 Si 為基材,大氣電漿沉積後以真空或空氣氣氛下以溫度 700C 時間 1 小時之退火處理後,發現 BaTiO3 與 Si 在高溫的環境下交互作用產生了 Ba2TiSi2O8 結晶相,利用 TiN 做為緩衝層可有效避免 Ba2TiSi2O8 的生成。相較於空氣氣氛下退火,真空退火擁有不會使 TiN 基材氧化成 TiO2 及 Si 基材上產生之 Ba2TiSi2O8 區域較小的優勢,有利於後續之應用。介電性質方面,利用 0.05 M Ba(NO3)2 及 0.1M Ti(NO3)4 作為前驅物,經過真空退火後所製備之立方相 BaTiO3 膜,於頻率 10kHz 時介電常數於為 621,於頻率 100 kHz 時,介電常數為 138。而介電損失方面,頻率 10 kHz 時,介電損失為 1.66,頻率 100 kHz 時,介電損失為 0.87。目

本研究亦利用改變製程時間探討大氣電漿製備 BaTiO3 膜的成長機制,推斷首先為立方相 BaTiO3 生成,接著為 Ba(NO3)2 及 BaO 隨著 BaTiO3 沉積至基材表面,經過退火處理後,Ba(NO3)2 及 BaO 消失僅殘存立方相 BaTiO3 結晶相,在退火的過程中,當前驅物中 Ba 高於 0.075 M 時,會與 BaTiO3 進一步反應生成BaTiO3/Ba2TiO4 混合相。
其他識別: U0005-0506201511312500
Rights: 同意授權瀏覽/列印電子全文服務,2018-07-16起公開。
Appears in Collections:材料科學與工程學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-103-7101066012-1.pdf10.45 MBAdobe PDFThis file is only available in the university internal network   
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.