Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91975
標題: 以氮化鈦薄膜作為直接甲醇燃料電池的觸媒層載體及其影響之研究
Effect of titanium nitride thin films on the use of catalyst support for direct methanol fuel cells
作者: 陳嘉祐
Jia-You Chen
關鍵字: 氮化鈦;直接甲醇燃料電池;載體;TiN;DSSC;support
引用: [1] L. E. Toth , Transition Metal Carbides and Nitrides, New York: Academic Press. (1971). [2] 汪建民,陶瓷技術手冊,中華民國冶金協會,1972年。 [3] H. E. Hintermann, “Thin solid films to combat friction, wear, and corro-sion,” J. Vac Sci. Technol. B, 2 (1984) 816. [4] M. Birkholz, K. E. Ehwald, D. Wolansky, I. Costina, C. B. Kaynak, M. Fröhlich, H. Beyer, A. Kapp, and F. Lisdat, “Corrosion-resistant metal lay-ers from a CMOS process for bioelectronic applications,” Surf. Coat. Technol. (2010) 204. [5] K. H. Xue, T. L. Ren, D. Xie, Z. Jia, M. M. Zhang, and L. T. Liu, “Nitro-gen-rich titanium nitride serving as Pt-Aldiffusion barrier for FeRAM ap-plication,” Taylor & Francis Group Integrated Ferroelectrics, 96 (2008) 19–26. [6] O.T. Muhammed Musthafa, and S. Sampath, “High performance plati-nized titanium nitride catalyst for methanol oxidation,” Chem.Commun. (2008) 67–69. [7] M. H. Yeh, U. Y. Lin, C. P. Lee, H. Y. Wei, C. Y. Chen, C. G. Wu, R. Vit-tala, and K. C. Ho, “Composite catalytic film of PEDOT:PSS/TiN–NPs on a flexible counter-electrode substrate for a dye-sensitized solar cell,” J. Mater. Chem. 21 (2011) 19021-19029. [8] J. E. Sundgren, “Structure and properties of TiN coatings,” Thin Solid Films, 128 (1985) 21-44. [9] J. Musil, V. Poulek, V. Valvoda, R. Kuzel, H. A. Jehn, and M. E. Baum-gartner, “Relation of deposition conditions of Ti-N films prepared by d.c. magnetron sputtering to their microstructure and macrostress,” Surf. Coat. Technol. 60 (1993) 484-488. [10] D. J. Ham, and J. S. Lee, “Transition Metal Carbides and Nitrides as Elec-trode Materials for Low Temperature Fuel Cells,” Energies 2 (2009) 873-899. [11] C. F. Windisch, Jr., J. W. Virden, S. H. Elder, J. Liu, and M. H. Engelhar, “Electrochemistry of TiN in 6 M KOH Solution,” J. Electrochem. Soc. Vol. 145 No. 4 (1998) 1211-1218. [12] H. M. Mott-Smith, “Irving Langmuir''s coining of 'plasma' was described by Harold M. Mott-Smith in a letter,” Nature 233 (1971) 219. [13] W. R. Grove, “On some phenomena of the voltaic discharge,” The Philos. Mag. 16 (1840) 478. [14] D. S. Rickerby, and A. Mattews, Advanced surface coatings, Chapman & Hall, New York, (1991). [15] W. R. Grove , “On voltaic series and the combination of gases by plati-num,” Philosophical Magazine and Journal of Science vol. XIV (1839) 127-130. [16] L. James, D. Andrew, Fuel cell systems explained, second edition, John Wiley & Sons Ltd (2003). [17] S.K. Kamarudin, and N. Hashim,“Materials, morphologies and structures of MEAs in DMFCs,” Renew Sust Energ Rev. 16 (2012) 2494-2515. [18] S. Y. Huang, P. Ganesan, and B. N. Popov, “Electrocatalytic activity and stability of niobium-doped titanium oxide supported platinum catalyst for polymer electrolyte membrane fuel cells,” Appl. Catal. B: Environmental 96 (2010) 224–231. [19] S.A.G. Evans, “Electrodeposition of platinum metal on TiN thin films,” Electrochem. Commun. 7 (2005) 125. [20] B. Avasarala, and P. Haldar, “On the stability of TiN-based electrocatalysts for fuel cell applications,” Int. J. Hydrogen Energy 36 (2011) 3965-3974. [21] O.T. Muhammed Musthafa, T. Ravikumar and S. Sampath, “High perfor-mance platinized titanium nitride catalyst for methanol oxidation,” Chem. Commun. (2008) 67–69. [22] O.T. Muhammed Musthafa, T. Ravikumar and S. Sampath, “Platinum par-ticles supported on titanium nitride: an efficient electrode material for the oxidation of methanol in alkaline media,” J. Mater. Chem. 20 (2010) 10643–10651. [23] Y. Xiao, Z. Fu, G. Zhan, Z. Pan, C. Xiao, S. Wu, C. Chen, G. Hu, and Z. Wei, “Increasing Pt methanol oxidation reaction activity and durability with a titanium molybdenum nitride catalyst support,” J Power Sources., 273 (2015) 33-40. [24] O. A. Khazova, A. A. Mikhailova, A. M. Skundin, E. K. Tuseeva, A. Hav-ranek, and K. Wippermann, “Kinetics of methanol oxidation on supported and unsupported Pt/Ru cata-lysts bonded to PEM,” Fuel Cell 2 (2002) 99-108. [25] A. J. Bard and L. R. Faulkner, Electrochemical methods:Fundamentals and applications, New York: Wiley (1980). [26] A. G. spencer, R. P. howson, and R. W. lewin, “Pressure stability in reac-tive magnetron sputtering,” Thin Solid Films 158 (1988) 141-149. [27] P. W. Shum, Z. F. Zhou, K. Y. Li, and Y. G. Shen, “XPS, AFM and nanoindentation studies of Ti1-xAlxN films synthesized by reactive unbal-anced magnetron sputtering,” Mater. Sci. Eng. B 100 (2003) 204-213. [28] M. J. Vasile, A. B. Emerson, and F. A. Baiocchi, “The characterization of titanium nitride by x-ray photoelectron spectroscopy and Rutherford backscattering,” J. Vac. Sci. Technol. A 8 (1990) 99. [29] N. Jiang, H. J. Zhang, S.N. Bao, Y. G. Shen, and Z. F. Zhou, “XPS study for reactively sputtered titanium nitride thin films deposited under differ-ent substrate bias,” Physica B 352 (2004) 118–126. [30] M. Braic, M. Balaceanu, A. Vladescu, A. Kiss, V. Braic, G. Epurescu, G. Dinescu, A. Moldovan, R. Birjega, and M. Dinescu, “Preparation and characterization of titanium oxy-nitride thin films,” Appl. Surf. Sci. 253 (2007) 8210–8214. [31] I. Bertoti, M. Mohai, J. L. Sullivan, and S.O. Saied, “Surface characterisa-tion of plasma-nitrided titanium: an XPS study,” Appl. Surf. Sci. 84 (1995) 357-371. [32] H. O. Pierson, Handbook of refractory carbides and nitride, Noyes Publi-cations, New Jersey, (1996) [33] 詹慕萱,濺鍍法中以空氣做為反應性氣體製備氮化鈦、氮氧化鈦與氮摻雜二氧化鈦薄膜及其特性研究,國立中興大學材料科學與工程學系博士論文,2012年。 [34] S. D. Chyou, H. C. Shih, and T. T. Chen, “On the corrosion characteriza-tion of titanium nitride in sulfuric acid solution,” Corrosion Sci. Vol. 35 Nos 1-4 (1993) 337-347. [35] B. Avasarala, and P. Haldar, “Electrochemical oxidation behavior of tita-nium nitride based electrocatalysts,” Electrochimica Acta 55 (2010) 9024–9034. [36] 楊家榮,以電化學法控制銅和銅銀複合奈米結構之形貌、大小及其在生化感測之應用,國立中興大學材料科學與工程學系博士論文,2014年。
摘要: 
Consider the shortage of energy, the development of alternative energies is an important issue. Direct methanol fuel cell (DMFC) has attracted much attention on this issue. However, the often used support material of anode is carbon which is sus-ceptible to erosion and poison during the development of DMFC. Thus, the develop-ment of non-carbon material support is one of the most important targets for many re-search teams.
Titanium nitride (TiN) is a suitable electrode because of its good conductivity and chemical stability. In this study, TiN films were deposited by DC magnetron sputter-ing using nitrogen as a reactive gas. TiN films were prepared with nitrogen flow rate of 3 ~ 6 sccm and deposition time of 10 - 60 min. Moreover, TiN films were analyzed in exploring the influences of TiN on the anode of DMFC.
TiN films were divided into three experiment of groups. The first one was the films prepared by changing nitrogen flow rate to study the relationship between maximum current density (catalytic effect) and properties of TiN films. The result is that the maximum current density decreased with increasing resistivity, and dropped after the first rise with increasing the film thickness. Surface particle size had the same effect on the catalytic effect like film thickness.
The second set was the films prepared by changing both deposition time and the nitrogen flow rate, which had different resistivities, with the same thickness and sur-face particle size. The result is that maximum current density increased with decreas-ing resistivity.
The third was the films prepared by changing the deposition time, which had different thickness and surface particle size, but with similar resistivities. Then the TiN films have similar resistivities when deposition time were 30 - 60 min. The maximum current density decreased with increasng the TiN film thickness. Moreover we found that surface particle size increased with the thickness. Thus, the surface particles size may also cause the maximum current density to decrease. From SEM results, platinum particles were found to increase with increasing the surface particle size. When plati-num particles size increased, the reaction area decreased, which reduced the catalytic effect.
Overall analyze show the characteristics of titanium nitride films with lattice constant of 0.424 - 0.428 nm, resistivity of 44.6±0.2 - 129±1 μΩ-cm, and thickness of 250±1 - 1441±7 nm. The maximum current densities are between 49 - 125 mA/mgPt. The TiN film with the lowest resistivity 47.3±0.3 μΩ-cm has the highest maximum current density 125 mA/mgPt.

能源日益減少,開發替代能源為重要議題,其中直接甲醇燃料電池受到相當程度的重視,但開發過程中電池陽極的載體多為碳材,易被侵蝕與毒化,故開發非碳材載體,是許多團隊的研究的重點之一。
氮化鈦因其良好的導電性與化學穩定性,適合作為電極,本研究中,以直流磁控濺鍍法,通入氮氣作為反應性氣體製備氮化鈦薄膜,改變製備薄膜時氮氣流量3 - 6 sccm與鍍著時間10 - 60 min,並對薄膜性質進行分析,探討氮化鈦性質對於直接甲醇燃料電池陽極電極的影響。
氮化鈦薄膜分為三組,第一組以改變氮氣流量製備氮化鈦薄膜,觀察最大電流密度(催化效果)與薄膜性質關係,最大電流密度隨電阻率下降而增加,隨薄膜厚度增加先上升後下降,薄膜表面顆粒大小對催化效果影響的趨勢與厚度相同。
第二組改變鍍著時間與氮氣流量,製備厚度表面形貌相近,但不同電阻率之薄膜,觀察得到最大電流密度隨電阻率下降而增加。
第三組改變鍍著時間,製備相近電阻率但不同厚度之薄膜,發現於鍍著時間30 - 60 min有相近之電阻率,但最大電流密度隨鍍著薄膜厚度增加而下降,此外發現薄膜表面形貌大小隨膜厚增加而上升,因此推測是否由於表面形貌改變造成最大電流密度下降,藉由實驗驗證,經SEM觀察附著白金後的表面,發現白金顆粒隨表面形貌大小增加而變大,反應面積減少使催化效果下降。
根據各項分析確定本研究所鍍著為氮化鈦薄膜,其晶格常數介0.424 - 0.428 nm之間,電阻率範圍44.6±0.2 - 129±1 μΩ-cm,薄膜厚度250±1 – 1441±7 nm,氧化最大電流密度介於49 - 125 mA/mgPt之間,氮化鈦薄膜有最低電阻率為47.3±0.3 μΩ-cm時,有最大電流密度125 mA/mgPt。
URI: http://hdl.handle.net/11455/91975
其他識別: U0005-2808201522370600
Rights: 同意授權瀏覽/列印電子全文服務,2018-08-31起公開。
Appears in Collections:材料科學與工程學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-104-7102066050-1.pdf5.79 MBAdobe PDFThis file is only available in the university internal network   
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.