Please use this identifier to cite or link to this item:
標題: 以水熱-化學電池法於TiN/Si基材上製備BaxSr1-xTiO3薄膜之特性研究
Characterization of BaxSr1-xTiO3 thin films on TiN/Si substrates synthesized by a hydrothermal-galvanic couple method
作者: 詹薰述
Hsun-Shu Chan
關鍵字: 鈦酸鍶鋇;氮化鈦;水熱-化學電池法;Barium Strontium Titanate;titanium nitride;hydrothermal-galvanic couple method
引用: [1] H. Miao, Y. Zhou, G. Tan, and M. Dong, “Microstructure and dielectric properties of ferroelectric barium strontium titanate ceramics prepared by hydrothermal method,” J. Electroceram. 21 (2008) 553. [2] C. Borderon, D. Averty, R. Seveno, and H. W. Gundel, “Preparation and Characterization of Barium Strontium Titanate Thin Films by Chemical Solution Deposition,” Ferroelectrics 362 (2008) 1. [3] A. Tombak, J. P. Maria, F. T. Ayguavives, Z. Jin, G. T. Stauf, A. I. Kingon, and A. Mortazawi, “Voltage-Controlled RF Filters Employing Thin-Film Barium–Strontium–Titanate Tunable Capacitors,” IEEE Trans. Microw. Theory Tech. 51 (2003) 462. [4] A. Kumar, and S. G. Manavalan, “Characterization of barium strontium titanate thin films for tunable microwave and DRAM applications,” Surf. Coat. Technol. 198 (2005) 406. [5] A. Tombak, J. P. Maria, F. Ayguavives, Z. Jin, G. T. Stauf, A. I. Kingon, and A. Mortazawi, “Tunable Barium Strontium Titanate Thin Film Capacitors for RF and Microwave Applications,” IEEE Microw. Wirel. Compon. Lett. 12 (2002) 3. [6] S. H. Xiao, H. J. Xu, J. Hu, W. F. Jiang, and X. J. Li, “Structure and humidity sensing properties of barium strontium titanate/silicon nanoporous pillar array composite films,” Thin Solid Films 517 (2008) 929. [7] Q. Zhang, L. Wang, J. Luo, Q. and Tang, J. Duw, “Improved Energy Storage Density in Barium Strontium Titanate by Addition of BaO–SiO2–B2O3 Glass,” J. Am. Ceram. Soc. 92 (2009) 1871. [8] Q. Zhang, J. Zhai, B. Shen, H. Zhang, and X. Yao, “Grain size effects on dielectric properties of barium strontium titanate composite ceramics,” Mater. Res. Bull. 48 (2013) 973. [9] M. Yoshida, H. Yabuta, and S. Yamamichi, “Plasma CVD of (BaSr)TiO3 Dielectrics for Gigabit DRAM Capacitors,” J. Electroceram. 3 (1999) 123. [10] M. Kocanda, S. F. Mohiudin, and I. A. Motaleb, “An Investigation of PLD-Deposited Barium Strontium Titanate (BaxSr1−xTiO3) Thin Film Optical Properties,” Cryst. Struct. Theory Appl. 1 (2012) 17. [11] P. Padmini, T. R. Taylor, M. J. Lefevre, A. S. Nagra, R. A. York, and J. S. Speck, “Realization of high tunability barium strontium titanate thin films by rf magnetron sputtering,” Appl. Phys. Lett. 75 (1999) 3186. [12] Q. Hu, T. Wang, L. Jin, and X. Wei, “Dielectric and energy storage properties of barium strontium titanate based glass–ceramics prepared by sol–gel method,” J. Sol-Gel Sci. Technol. 71 (2014) 522. [13] J.S. Chun, I. Petrov, and J. E. Greene, “Dense fully 111-textured TiN diffusion barriers: Enhanced lifetime through microstructure control during layer growth,” J. Appl. Phys. 86 (1999) 3633. [14] E. T. Whittaker, A History Of The Theories Of Aether And Electricity: From The Age Of Descartes To The Close Of The Nineteenth Century, Longman, London, 1910, 67. [15] O. G. Palanaa, Engineering Chemistry, Tata McGraw-Hill Education, New Delhi, 2009, 44. [16] W. D. Callister, Materials Science and Engineering: an introduction, Wiley Asia Student Edition, New York, 2007, 703. [17] S. Agarwal, and G. L. Sharma, “Humidity sensing properties of (Ba, Sr)TiO3 thin films grown by hydrothermal- electrochemical method,” Sens. Actuators B 85 (2002) 205. [18] D. Gao, D. Xiao, J. Bi, P. Yu, G. Yu, W. Zhang, and J. Zhu, “Hydrothermal Syntheses of Barium Strontium Titanate Thin Films,” Mater. Trans. 44 (2003) 1320. [19] J. Zhao, X. Wang, R. Chen, and L. Li, “Synthesis of thin films of barium titanate and barium strontium titanate nanotubes on titanium substrates,” Mater. Lett. 59 (2005) 2329. [20] J. Xu, J. Zhai, and X. Yao, “Growth and Characterization of BaxSr1-xTiO3 Thin Films Derived by A Low-Temperature Process,” Cryst. Growth Des. 6 (2006) 2197. [21] J. Zhao, X. Wang, L. Li, X. Wang, and Y. Li, “Stoichiometry control and structure evolution in hydrothermally derived (Ba,Sr)TiO3 films,” Ceram. Int. 34 (2008) 1223. [22] R. Z. Hou, A. Wu, and P. M. Vilarinho, “Low-Temperature Hydrothermal Deposition of (BaxSr1-x)TiO3 Thin Films on Flexible Polymeric Substrates for Embedded Applications,” Chem. Mater. 21 (2009) 1214. [23] Z. Zhou, H. Tang, Y. Linb, and H. A. Sodano, “Hydrothermal growth of textured BaxSr1-xTiO3 films composed of nanowires,” Nanoscale 5 (2013) 10901. [24] 余錦智,以低溫水熱法及化學電池作用於氮化鈦膜上製備鈦酸鋇膜之研究,國立中興大學材料科學與工程學系碩士論文,2005年。 [25] 鄧煥平,以低溫-水熱化學電池法於鍍氮化鋯膜矽基材上製備鋯酸鋇膜之研究,國立中興大學材料科學與工程學系碩士論文,2007年。 [26] 趙玲夙,以低溫-水熱化學電池法於鍍鈦膜矽基材上製備具有生物活性之奈米NaHTi3O7薄膜研究,國立中興大學材料科學與工程學系碩士論文,2009年。 [27] 蔡迪佑,以水熱-化學電池法於氮化鈦膜上製備鈦酸鋇膜及其成長動力學分析,國立中興大學材料科學與工程學系碩士論文,2010年。 [28] 林佳君,以水熱-化學電池法於不同表面形貌及電阻率之TiN/Si上製備SrTiO3膜之研究,國立中興大學材料科學與工程學系碩士論文,2011年。 [29] 簡榛密,以水熱-化學電池法在鍍氮化鈦膜基材上製備鈦酸鋇膜與應用於天線之研究,國立中興大學材料科學與工程學系碩士論文,2012年。 [30] 蔡右相,水熱-化學電池法中以低Sr離子濃度生成SrTiO3薄膜之研究,國立中興大學材料科學與工程學系碩士論文,2013年。 [31] 陳祺涵,以低Ba離子濃度在水熱-化學電池法生成BaTiO3薄膜之探討,國立中興大學材料科學與工程學系碩士論文,2014年。 [32] 吳?泓,以水熱-化學電池法於ZrN/Si上製備BaZrO3薄膜及成長機制分析,國立中興大學材料科學與工程學系碩士論文,2015年。 [33] Y. C. Chieh, C. C. Yu, and F.-H. Lu, “Epitaxial growth of BaTiO3 films on TiN/Si substrates by a hydrothermal-galvanic couple method,” Appl. Phys. Lett. 90 (2007) 032904. [34] H. P. Teng, Y. C. Chieh, and F.-H. Lu, “Preparation of BaZrO3 films by physical vapor deposition and a novel hydrothermal duplex technique,” Thin Solid Films 516 (2007) 364. [35] P. H. Chan, and F.-H. Lu, “Low-temperature hydrothermal–galvanic couple synthesis of BaTiO3 thin films on Ti-coated silicon substrates,” Thin Solid Films 517 (2009) 4782. [36] P. H. Chan, and F.-H. Lu, “Low Temperature Hydrothermal Synthesis and the Growth Kinetics of BaTiO3 Films on TiN/Si, Ti/Si, and Bulk-Ti Substrates,” J. Electrochem. Soc. 57 (2010) G130. [37] C. J. Yang, L. S. Chao, and F.-H. Lu, “Synthesis and electrochemical behaviors of nano-network NaHTi3O7 thin films on Ti/Si prepared by a hydrothermal-galvanic couple method,” Surf. Coat. Technol. 231 (2013) 521. [38] C. J. Yang, D. Y. Tsai, P. H. Chan, C. T. Wu, and F.-H. Lu, “Hydrothermal–galvanic couple synthesis of directionally oriented BaTiO3 thin films on TiN-coated substrates,” Thin Solid Films 542 (2013) 108. [39] Y. H. Tsai, Y. C. Chieh, and F.-H. Lu, “Influence of Sr+2 concentrations on growth of SrTiO3 thin films synthesized by hydrothermal–galvanic couple method,” Thin Solid Films 570 (2014) 479. [40] C.K. Tan, G.K.L. Goh, and G.K. Lau, “Growth and dielectric properties of BaTiO3 thin films prepared by the microwave-hydrothermal method,” Thin Solid Films 516 (2008) 5545. [41] M. Pourbaix, Atlas Of Electrochrmical Equilibria In Aqueous Solutions, Cebelcor, Houston, 1967. [42] K. Kajiyoshi, M. Yoshimura, Y. Hamaji, K. Tomono, and T. Kasanami, “Growth of (Ba, Sr)TiO3 thin films by the hydrothermal-electrochemical method and effect of oxygen evolution on their microstructure,” J. Mater. Res. 11 (1996) 196. [43] R. K. Roede, and E. B. Slamovich, “Stoichiometry Control and Phase Selection in Hydrothermally Derived BaxSr1−xTiO3 Powders,” J. Am. Ceram. Soc. 82 (1999) 1665. [44] M. A. McCormick, R. K. Roeder, and E. B. Slamovich, “Processing effects on the composition and dielectric properties of hydrothermally derived BaxSr(1−x)TiO3 thin films,” J. Mater. Res. 16 (2001) 1200. [45] I. Barin, F. Sauert, E. S. Rhonhof, and W. S. Sheng, Thermochemical Data of Pure Substances, VCH Publishers, New York, 2008. [46] K.A. Razak, A.Asadov, J. Yoo, E Haemmerle, and W. Gao, “Structure and dielectric properties of barium strontium titanate produced by high temperature hydrothermal method,” J. Alloys Compd. 449 (2008) 19. [47] A. Testino, V. Buscaglia, M. T. Buscaglia, M. Viviani, and P. Nanni, “Kinetic Modeling of Aqueous and Hydrothermal Synthesis of Barium Titanate (BaTiO3),” Chem. Mater. 17 (2005) 5346. [48] J. A. Dirksen, and T. A. Ring, “Fundamentals of crystallization: Kinetic effects on particle size distributions and morphology,” Chem. Eng. Sci. 46 (1991) 2389. [49] E. R. Nightingale, “Phenomenological Theory of Ion Solvation. Effective Radii of Hydrated Ions,” J. Phys. Chem. 63 (1959) 1381.
This study is mainly to synthesize BaxSr1-xTiO3 thin films on TiN/Si substrates by a hydrothermal-galvanic couple method. Various ratios of Ba(CH3COO)2/Sr(CH3COO)2 mixed with 2 M NaOH were used as reaction solutions at 80℃ for 60 min. Influences of grown BST thin films by different ratios and the total concentrations of Ba(CH3COO)2/Sr(CH3COO)2 were investigated.
Monitoring the reaction voltage and current between TiN and platinum electrodes, we found that as the ratio of [Ba/(Ba+Sr)]sol. increased, the values of the maximum current increased. X-ray diffraction patterns revealed that cubic phase BST has the same (111) preferred orientation as the TiN seeding layer. When the ratio of [Ba/(Ba+Sr)]sol. increased, the diffraction peak of BST(111) shifted to low angles and the relative intensity of BST was significantly enhanced. Field-emisson scanning election microscopy results showed that spherical particles gathered to form continuous BST thin films with a single layer of the hemispherical film. As the ratio of [Ba/(Ba+Sr)]sol. increased, both grain size and thickness of the films decreased. It might be due to that the growth rate of BaTiO3 is faster than that of SrTiO3. X-ray photoelectron spectroscopy results show that strong Sr incorporation into the films was observed in the BST films, which is owing to that the free energy of formation for SrTiO3 is lower than that of BaTiO3. The maximum of dielectric constant of obtained films is 200 and the minimum of dielectric loss of the films is 0.55.
As the concentration of the solution increased from 0.01 to 1 M, the maximum current value, relative intensity of BST, average grain size, and thickness increased rapidly first and then decreased gradually. All of them had a maximum value at 0.04 M. At low concentrations, grain growth was more prominent, resulting lager grain size and thickness of BST films. Nucleation predominated at high concentrations, causing smaller grain size and thickness of the films. At the solution concentration of 0.04 M, the maximum grain size and thickness of the films were 240±30 nm and 170±50 nm, respectively.

本研究主要是利用水熱-化學電池法,於TiN/Si基材上製備BaxSr1-xTiO3薄膜,實驗方法是由不同醋酸鋇/醋酸鍶溶液比例與2 M NaOH之混合溶液作為反應溶液,在溫度80℃下反應60分鐘,分別改變醋酸鋇/醋酸鍶溶液比例以及醋酸鋇/醋酸鍶溶液總濃度來探討對於BST薄膜之影響。
由反應過程中監測電壓與電流,發現隨著溶液中[Ba/(Ba+Sr)]sol.比例越高,最大電流值有上升趨勢。經由XRD分析結果,顯示生成物具有與TiN基材相同之(111)優選方向的立方相BST。當溶液中[Ba/(Ba+Sr)]sol.比例增加時,BST(111)繞射峰會往低角度偏移,且繞射峰相對強度明顯增強。經FE-SEM觀察,可看出生成BST薄膜其表面為連續球狀晶粒,而橫截面為單一層半球狀薄膜,其晶粒尺寸與厚度隨著溶液中[Ba/(Ba+Sr)]sol.比例增加而減小,推測是為BaTiO3成長速率較SrTiO3快之影響。由XPS分析結果可知道薄膜內Sr比例較配置溶液時之比例來得高,推測是因為SrTiO3之標準生成吉布斯自由能較BaTiO3低。目前得到之最大介電常數為200,BST薄膜[Ba/(Ba+Sr)]film.成分為0.75(Ba0.75Sr0.25TiO3),測得之介電損失最小為0.55, BST薄膜[Ba/(Ba+Sr)]film.成分為0.42(Ba0.42Sr0.58TiO3)。
探討不同醋酸鋇/醋酸鍶溶液總濃度對BST薄膜之影響,當總濃度0.011 M時,反應電流最大值、BaxSr1-xTiO3繞射峰相對強度、晶粒尺寸及膜厚,皆有急速增加至最大值,再逐漸減少的趨勢,而在總濃度0.04 M時皆有最大值。總濃度較低時,晶粒成長明顯,可生成較大晶粒與膜厚;總濃度較高時,成核速率快,晶粒成長後較小;而在總濃度0.04 M時,有最大晶粒尺寸與膜厚,分別為240±30 nm與170±50 nm。
其他識別: U0005-2808201500302500
Rights: 同意授權瀏覽/列印電子全文服務,2018-08-31起公開。
Appears in Collections:材料科學與工程學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-104-7102066030-1.pdf4.71 MBAdobe PDFThis file is only available in the university internal network   
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.