Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91978
標題: 以水熱-化學電池法於ZrN/Si上製備BaZrO3薄膜及成長機制分析
Synthesis and formation mechanism of BaZrO3 thin films by a hydrothermal-galvanic couple method on ZrN/Si substrate
作者: 吳効泓
Hsiao-Hung Wu
關鍵字: 鋯酸鋇;氮化鋯;水熱-化學電池法;barium zirconate;zirconium nitride;hydrothermal-galvanic couple;thin films
引用: 參考文獻 [1]A.-M. Azad, S. Subramaniam, and T. W. Dung, “On the development of high density barium metazirconate (BaZrO3) ceramics,”J. Alloys Comp., 334 (2002) 118. [2]M. W. Barsoum, Fundamental of Ceramics, Institute of Physics Publishing, London (2003). [3]M. Enhessari, M. Shaterian, K. Ozaee, and E. Karamali, “Synthesis and Thermal Properties of Polyimide/BaZrO3 Novel Nanocomposites,” Polym. Plast. Technol. Eng., 51 (2012) 345. [4]S. Parida, S. K. Rout, L. S. Cavalcante, E. Sinha, M. Siu Li, V. Subramanian, N. Gupta, V. R. Gupta, J. A. Varela, and E. Longo, “Structural refinement, optical and microwave dielectric properties of BaZrO3,” Ceram. Int., 38 (2012) 2129. [5]S. Yamanaka, T. Hamaguchi, T. Oyama, T. Matsuda, S.-I. Kobayashi, and K. Kurosaki, “Heat capacities and thermal conductivities of perovskite type BaZrO3 and BaCeO3,” J. Alloys Compd., 359 (2003) 1. [6]G. Nogami, H. Maruyama, and K. Hongo, “Thin Film Dielectric Ion Sensors,” J. Electrochem. Soc., 140 (1993) 8. [7]R. M. Chaudhari, V. B. Gaikwad, P. D. Hire, R. L. Patil, S. D. Shinde, N. U. Patil, and G. H. Jain, “Studies of Gas Sensing Performance of Barium Zirconate,” Sensors & Transducers Journal, 127 (2011) 76. [8]J. H. Shim, T. M. Gur, and F. B. Prinz, “Proton conduction in thin film yttrium-doped barium zirconate,” Appl. Phys. Lett., 92 (2008) 253115. [9]D. A. Landinez-Tellez, J. Roa-Rojas, and G. Pena-Rodriguez, “Structural and Magnetic Properties of YBa2Cu3O7/BaZrO3 Composites,” Mat. Res., 16 (2013) 1002. [10]B. Shen, Q. Zhang, J. Zhai, and Z. Xu, “DC field effect on dielectric property of Ba(ZrxTi1-x)O3 ceramics,” Ceram. Int., 39 (2013) S9. [11]A. R. Akbarzadeh, I. Kornev, C. Malibert, L. Bellaiche, and J. M. Kiat, “Combined theoretical and experimental study of the low-temperature properties of BaZrO3,” Phys. Rev. B, 72 (2005) 205104. [12]T. Tohma, H. Masumoto, and T. Goto, “Preparation of BaTiO3–BaZrO3 Films by Metal-Organic Chemical Vapor Deposition,” Jpn. J. Appl. Phys., 41 (2002) 6643. [13]A. Singh, P. Kuppusami, S. Khan, C. Sudha, R. Thirumurugesan, R. Ramaseshan, R. Divakar, E. Mohandas, and S. Dash “Influence of nitrogen flow rate on microstructural and nanomechanical properties of Zr–N thin films prepared by pulsed DC magnetron sputtering,” Appl. Surf. Sci., 280 (2013) 117. [14]C.-P. Liu, H.-G. Yang, “Systematic study of the evolution of texture and electrical properties of ZrNx thin films by reactive DC magnetron sputtering,” Thin Solid Films, 444 (2003) 111. [15]P. Klumdoung, A. Buranawong, S. Chaiyakun, and P. Limsuwan, “Variation of color in Zirconium nitride thin films prepared at high Ar flow rates with reactive dc magnetron sputtering,” Procedia Eng., 32 (2012) 916. [16]C.-P. Liu, H.-G. Yang, “Deposition temperature and thickness effects on the characteristics of dc-sputtered ZrNx films,” Mater. Chem. Phys., 86 (2004) 370. [17]H. Yanagisawa, S. Shinkai, K. Sasaki, J. Sakurai, Y. Abe, A. Sakai, and S. Zaima, “Epitaxial growth of (111)ZrN thin films on (111)Si substrate by reactive sputtering and their surface morphologies,” J. Cryst. Growth, 297 (2006) 80. [18]Y.-Y. Chang, C.-J. Wu, “Mechanical properties and impact resistance of multilayered TiAlN/ZrN coatings,” Surf. Coat. Technol., 231 (2013) 62. [19]B. Subramanian, K. Ashok, C. Sanjeeviraja, P. Kuppusami, and M. Jayachandran, “Reactive DC Magnetron Sputtered Zirconium Nitride (ZrN) Thin Film and its Characterization,” J.Phys.Conf.Ser., 114 (2008) 012039. [20]M. D. Re, R. Gouttebaron, J.-P. Dauchot, P. Leclere, G. Terwagne, and M. Hecq, “Study of ZrN layers deposited by reactive magnetron sputtering,” Surf. Coat. Technol., 174 (2003) 240. [21]M. A. Signore, D. Valerini, A. Rizzo, L. Tapfer, L. Capodieci, and A. Cappello, “Investigation of the physical properties of ion assisted ZrN thin films deposited by RF magnetron sputtering,” J. Phys. D: Appl. Phys., 43 (2010) 225401. [22]W.-J. Chou, C.-H. Sun, G.-P. Yu, and J.-H. Huang, “Optimization of the deposition process of ZrN and TiN thin films on Si(100) using design of experiment method,” Mater. Chem. Phys., 82 (2003) 228. [23]吳柏倫,在物理氣相沈積法中以空氣做為反應性氣體製備ZrN薄膜,國立中興大學材料科學與工程學系碩士學位論文 (2008)。 [24]李昆全,濺鍍法中以空氣為基底製備Zr-N-O薄膜之製程區間與特性研究,國立中興大學材料科學與工程學系碩士學位論文 (2013)。 [25]汪建民,陶瓷技術手冊 (下),中華民國冶金協會,1972年,777。 [26]A. B. Mei1, B. M. Howe, C. Zhang, M. Sardela, J. N. Eckstein, L. Hultman, A. Rockett, I. Petrov and J. E. Greene, “Physical properties of epitaxial ZrN/MgO(001) layers grown by reactive magnetron sputtering,” J. Vac. Sci. Technol. A 31 (2013) 061516. [27]M. M. S. Sirajuddeen, I. B. S. Banu, “FP-LAPW investigation of electronic, magnetic, elastic and thermal properties of Fe-doped zirconium nitride,” AIP adv., 4 (2014) 057121. [28]A. Singh, N. Kumar, P. Kuppusami, T. N. Prasanthi, P. Chandramohan, S. Dash, M. P. Srinivasan, E. Mohandas, and A.K. Tyagi, “Tribological properties of sputter deposited ZrN coatings on titanium modified austenitic stainless steel,” Wear, 280 (2012) 22. [29]D. Dobosz, K. Golaszewska, Z. R. Zytkiewicz, E. Kaminska, A. Piotrowska, T. T. Piotrowski, A. Barcz, and R. Jakiela, “Properties of ZrN films as substrate masks in liquid phase epitaxial lateral overgrowth of compound semiconductors,” Cryst. Res. Technol., 40 (2005) 492. [30]C. Stampfl, W. Mannstadt, R. Asahi and A. J. Freeman, “Electronic structure and physical properties of early transition metal mononitrides: Density-functional theory LDA, GGA, and screened-exchange LDA FLAPW calculations,” Phys. Rev. B 63 (2001) 153310. [31]D.Wu, Z. Zhang,W. Fu, X. Fan, and H. Guo, “Structure, electrical and chemical properties of zirconium nitride films deposited by dc reactive magnetron sputtering,” Appl. Phys. A 64 (1997) 593. [32]J. Westlinder, J. Malmstrom, G. Sjoblom, and J. Olsson, “Low-resistivity ZrNx metal gate in MOS devices,” Solid-State Electron. 49 (2005) 1410. [33]V. M. Fuenzalida, M. E. Pilleux, “Hydrothermally grown BaZrO3 films on zirconium metal: microstructure, x-ray photoelectron spectroscopy, and Auger electron spectroscopy depth profiling,” J. Mater. Res., 10 (1995) 2749. [34]S. B. Mi, C. L. Jia, M. I. Faley, U. Poppe, and K. Urban, “High-resolution electron microscopy of microstructure of SrTiO3/BaZrO3 bilayer thin films on MgO substrates,” J. Cryst. Growth, 300 (2007) 478. [35]Y. Kitano, T. Matsui, N. Fujimura, K. Morii, and T. Ito, “Thin film crystal growth of BaZrO3 at low oxygen partial pressure,” J. Cryst. Growth, 243 (2002) 164. [36]T. Tohma, H. Masumoto and T. Goto, “Preparation of BaTiO3–BaZrO3 Films by Metal-Organic Chemical Vapor Deposition,” Jpn. J. Appl. Phys., 41 (2002) 6643. [37]M. E. Pilleux, C.R. Grahmann, V. M. Fuenzalida, and R.E. Avila, “Hydrothermal ABO3 ceramic thin films,” Appl. Surf. Sci., 65 (1993) 283. [38]K. Kajiyoshi, K. Yanagisawa, and M. Yoshimura, “Hydrothermal and electrochemical growth of complex oxide thin films for electronic devices,” J. Eur. Ceram. Soc., 26 (2006) 605. [39]K. Kajiyoshi, K. Yanagisawa, Q. Feng, and M. Yoshimura, “Preparation of complex oxide thin films under hydrothermal and hydrothermal-electrochemical conditions,” J. Mater. Sci., 41 (2006) 1535. [40]呂福興,余錦智,揭由志,詹佩諠,伍組聰,製備鈦酸鋇的方法,2006,中華民國發明專利,證書證號 I261633。 [41]呂福興,鄧煥平,揭由志,鋯酸鋇膜之製造方法,2010,中華民國發明專利,證書證號 I321168。 [42]余錦智,“以低溫水熱法及化學電池作用於氮化鈦膜上製備鈦酸鋇膜之研究” 國立中興大學材料工程所碩士論文,2005年。 [43]Y.-C. Chieh, C.-C. Yu, and F.-H. Lu, 'Epitaxial growth of BaTiO3 films on TiN/Si substrates by a hydrothermal-galvanic couple method,' Appl. Phys. Lett., 90 (2007) 032904. [44]P.-H. Chan, F.-H. Lu, “Low-temperature hydrothermal-galvanic couple synthesis of BaTiO3 thin films on Ti-coated silicon substrate,” Thin Solid Films, 517 (2009) 4782. [45]C.-J. Yang, D.-Y. Tsai, P.-H. Chan, C.-T. Wu, and F.-H. Lu, “Hydrothermal–galvanic couple synthesis of directionally oriented BaTiO3 thin films on TiN-coated substrates,” Thin Solid Films, 542 (2013) 108. [46]蔡迪佑,“以水熱-化學電池法於氮化鈦膜上製備鈦酸鋇膜及其成長動力學分析”,國立中興大學材料科學與工程學系碩士論文,(2010)。 [47]鄧煥平,“以低溫水熱-化學電池法於鍍氮化鋯膜矽基材上製備鋯酸鋇膜之研究” 國立中興大學材料工程所碩士論文,2007年。 [48]H.-P. Teng, Y.-C. Chieh, and F.-H. Lu, 'Preparation of BaZrO3 films by physical vapor deposition and a novel hydrothermal duplex technique,' Thin Solid Films, 516 (2007) 364. [49]G. Łupina, J. Dąbrowski, P. Dudek, G. Kozłowski, P. Zaumseil, G. Lippert, O. Fursenko, J. Bauer, C. Baristiran, I. Costina, H.-J. Mussig, L. Oberbeck, and U. Schroder, “Dielectric constant and leakage of BaZrO3 films,” Appl. Phys. Lett., 94 (2009) 152903. [50]R.B. Mos, M.S. Gabor, M. Nasui, T. Petrisor Jr., C. Badea, A Rufoloni, L. Ciontea, and T. Petrisor, “Synthesis of epitaxial BaZrO3 thin films by chemical solution deposition,” Thin Solid Films, 518 (2010) 4714. [51]ASTM(2011) Standard:Standard Test Method for Sheet Resistance of Thin Metallic Films With a Collinear Four-Probe Array. [52]J. C. Caicedo, Bejarano G., M. E. Gomez, P. Prieto, C. Cortez and J. Munoz, “Nanostructured multilayers of TiN/ZrN obtained by magnetron sputtering,” phys. stat. sol., 11 (2007) 4127. [53]L. Ciontea, T. Ristoiu, R.–C. Suciu, T. Petrisor JR., B. Neamtu, A. Rufoloni, G. Celentano, and T. Petrisor, “Chemical processing and characterization of barium zirconate nanopowders,” J. Opt. Adv. Mater., 9 (2007) 776. [54]B. Su, K. L. Choy, “Structure and growth characteristics of BaZrO3 films produced using an electrostatic assisted aerosol–gel deposition method,” J. Mater. Chem., 9 (1999) 1629. [55]S. Parida, S. K. Rout, L.S. Cavalcante, E. Sinha, M. Siu Li, V. Subramanian, N. Gupta, V.R. Gupta, J.A. Varela, and E. Longo, “Structural refinement, optical and microwave dielectric properties of BaZrO3,” Ceram. Int., 38 (2012) 2129. [56]B. Sreedhar, Ch. Satya Vani, D. Keerthi Devi, M. V. Basaveswara Rao, and C. Rambabu, “Shape Controlled Synthesis of Barium Carbonate Microclusters and Nanocrystallites using Natural Polysachharide-Gum Acacia,” Am. J. Mater. Sci., 2(1) (2012) 5. [57]H. P. Kumara, C. Vijayakumar, C. N. George ,S. Solomonc, R. Jose, J.K. Thomas, J. Koshy “Characterization and sintering of BaZrO3 nanoparticles synthesized through a single-step combustion process,” J. Alloys Compd., 458 (2008) 528. [58]趙玲夙,“以低溫水熱-化學電池法於鍍鈦膜矽基材上製備具有生物活性之奈米NaHTi3O7薄膜研究”,國立中興大學材料科學與工程學系碩士論文,(2009)。 [59]C. F. Windisch Jr., J. W. Virden, S. H. Elder, J. Liu, and M. H. Engelhard, “Electrochemistry of TiN in 6 M KOH solution,” J. Electrochem. Soc. 145 (1998) 1211. [60]W. H. Pbilipp, “Chemical reactions of carbides, nitrides, and diborides of titanium and zirconium and chemical bonding in these compounds,” NASA TN D-3533 (1966). [61]D. Zhuang, J. H. Edgar, B. Strojek, J. Chaudhuri, and Z. Rek, “Defect-selective etching of bulk AlN single crystals in molten KOH/NaOH eutectic alloy,” J. Cryst. Growth, 262 (2004) 89. [62]S. S. Zumdahl and S. A. Zumdahl, Chemistry, Eighth Edition, Cengage Learning, USA (2010) [63]J. A. Dean, Lange''s Handbook of Chemistry, McGraw-Hill, Inc., New York (1999).
摘要: 
Abstract
This research is to synthesize barium zirconate (BaZrO3) films on ZrN-coated Si substrate at 90oC by hydrothermal-galvanic couple method (HT-GC) using fixed 0.5 M Ba(OH)2 with 2 M-4 M NaOH as electrolyte. The influences of the OH- ions concentration on the growth of BaZrO3 films are discussed. ZrN/Si substrate was prepared by unbalance megnetron sputtering technique at sputter power 300 W and 400 W. In the literature, except for our research, no research has been reported on the BaZrO3 film synthesis by using such a method. Traditionally, hydrothermal method and hydrothermal-electrochemical method in synthesizing BaZrO3 films usually require bulk-Zr as seeding layers. ZrN/Si substrate has never been used in the literature before. No complete mechanism has been proposed for synthesizing BaZrO3 films by hydrothermal-galvanic couple method in the past.
The influences of voltage and current at different reaction times on growth of BaZrO3 films was investigated. The growth mechanisms of BaZrO3 films were studied by X-ray diffraction (XRD), Fourier transform infrared spectrometer (FT-IR), field-emission scanning electron microscope (FE-SEM) and energy dispersive spectrometers (EDS). Crystalline BaZrO3 films could be obtained in 0.5 M Ba(OH)2 mixed with 4 M NaOH electrolyte for 12 hours by using ZrN/Si substrate with various sputter powers. The morphology of films turned from nanolayered structure into dense microstructure and crystallinity became better with increasing of the OH- concentration. After analyzing of the experimental data, the films were at first single layer with many pores and microcracks that allows electrolytes penetruting into the ZrN and reacting continuilly. Finally, multilayer structure was obtained. We found the films prepared at low concentration of OH- condition were mutilayer structure which contained mostly oxide. With increasing the concentration of OH-, morphology turned into dense microstructure and the content of BaZrO3 increased.
In this work, crystalline BaZrO3 films were successfully prepared on ZrN/Si by hydrothermal-galvanic couple method without further annealing. The process was one-step which prone to green processing and synthesis. The growth of films could be tailored by controlling the voltage and current versus time behavior. The thickness of BaZrO3 films could be controlled by the thickness of seeding-layer ZrN.

摘要
本研究為以水熱-化學電池法,於ZrN/Si基材上,固定反應溫度90oC,製備BaZrO3膜。文獻中除了本實驗室外,並未有其他研究使用此方法製備BaZrO3膜,且傳統水熱法及水熱-電化學法所選用之基材皆以Zr塊材為主,並未有使用ZrN薄膜作為反應基材。先前實驗室以此方法,於ZrN/Si基材上成功製備BaZrO3膜,但未探討BaZrO3之生長機制,本次於過程中之反應電壓及反應電流作詳細的監測。本研究使用電解液為0.5 M Ba(OH)2、0.5 M Ba(OH)2 + 2 M NaOH及0.5 M Ba(OH)2 + 4 M NaOH,固定Ba2+離子來源,探討改變電解液中OH-離子濃度對生成BaZrO3膜之影響。其中ZrN/Si基材為本實驗室之非平衡磁控濺鍍鍍膜機(UBM)所製備,透過使用300及400 W兩種濺鍍功率鍍著ZrN/Si,以探討不同ZrN底材對生成BaZrO3膜之影響。
本實驗監測反應過程中電流密度和電壓,並以X光繞射(XRD)分析晶體結構、傅立葉轉換紅外線光譜(FT-IR)分析鍵結、場發射掃描式電子顯微鏡(FE-SEM)分析微結構及X光能量散譜儀(EDS)分析成份對反應時間變化關係,以瞭解BaZrO3膜之成膜情形。不同濺鍍功率製備之ZrN/Si,於電解液0.5 M Ba(OH)2 + 4 M NaOH,反應12小時皆可生成結晶相之BaZrO3膜,顯示在此條件下,不同濺鍍功率所鍍著之ZrN/Si影響較小。接著觀察不同電解液的部分,發現當電解液中之OH-濃度增加時,生成膜之形貌會由多層狀逐漸轉變成緻密塊狀堆積,透過XRD分析,結晶性有增加的趨勢,根據監測不同時間之反應結果分析,發現其成膜情形為先生成單層膜,而單層膜上擁有許多微孔洞及微裂縫,使電解液可滲透其中以持續與ZrN反應,而形成層狀結構,當於低OH-濃度時,生成膜為多層形貌,且成份上多為Zr之氧化物,隨著OH-濃度增加,開始轉變為緻密塊狀堆積,BaZrO3含量隨之增加。
透過水熱-化學電池法,可成功於ZrN膜上製備結晶相之BaZrO3膜,且過程中不需作後續熱處理,此製備方式為單一製程(One-step),符合現代節能之概念。而成膜過程只需透過監測反應電流、電壓對時間之變化關係,即可掌握當前生長情形。研究中也得到可控制ZrN底材厚度來控制生成BaZrO3膜之厚度。
URI: http://hdl.handle.net/11455/91978
其他識別: U0005-1203201515502600
Rights: 同意授權瀏覽/列印電子全文服務,2018-03-13起公開。
Appears in Collections:材料科學與工程學系

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-104-7101066040-1.pdf10.2 MBAdobe PDFThis file is only available in the university internal network   
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.