Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91980
標題: 以熱化學氣相沉積法製備碳薄膜之機制及其搭配遠端電漿應用在製備石墨烯之研究
Kinetics of carbon films deposition using thermal chemical vapor deposition and its application on graphene synthesis through adding remote plasma
作者: 賴良訓
Liang-Hsun Lai
關鍵字: 動力學;化學氣相沉積;石墨烯;Kinetics;Chemical vapor deposition;Graphene
引用: 1. H.O. Pierson, Handbook of Carbon, Graphite, Diamond and Fullerenes: Properties, Processing and Applications, Noyes Publications, New Jersey, (1995). 2. H. Zhu, J. Wei, K. Wang, and D. Wu, Applications of carbon materials in photovoltaic solar cells, Sol. Energy Mater. Sol. Cells 93 (2009) 1461. 3. A. Grill, Diamond-like carbon: state of the art, Diam. Relat. Mater. 8 (1999) 428. 4. J. Robertson, Diamond-like amorphous carbon, Mater. Sci. Eng. R 37 (2002) 129. 5. Y.S. Han and J.Y. Lee, Improvement on the electrochemical characteristics of graphite anodes by coating of the pyrolytic carbon using tumbling chemical vapor deposition, Electrochim. Acta 48 (2003) 1073. 6. Y.S. Ding, W.N. Li, S. Iaconetti, X.F. Shen, and J. DiCarlo, Characteristics of graphite anode modified by CVD carbon coating, Surf. Coat. Technol. 200 (2006) 3041. 7. C.R. Lin, D.H. Wei, C.K. Chang, and W.H. Liao, Optical properties of diamond-like carbon films for antireflection coating by RF magnetron sputtering method, Physics Procedia 18 (2011) 46. 8. L. Ilberg, H. Manis-Levy, A. Raveh, Y. Lifshitz, and M. Varenberg, Effect of structure of carbon films on their tribological properties, Diam. Relat. Mater. 38 (2013) 79. 9. G. Dearnaley and J.H. Arps, Biomedical applications of diamond-like carbon (DLC) coatings: A review, Surf. Coat. Technol. 200 (2005) 2518. 10. C.A. Taylor and W.K.S. Chiu, Characterization of CVD carbon films for hermetic optical fiber coatings, Surf. Coat. Technol. 168 (2003) 1. 11. H.C. Lin, S.T. Shiue, Y.H. Cheng, T.J. Yang, T.C. Wu, and H.Y. Lin, Characteristics of carbon coatings on optical fibers prepared by plasma enhanced chemical vapor deposition using different argon/methane ratios, Carbon 45 (2007) 2004. 12. S.T. Shiue, Thermal stresses in hermetically double-coated optical fibers, J. Appl. Phys. 85 (1999) 3044. 13. S.S. Chen, S.T. Shiue, Y.H. Wu, and K.J. Cheng, Effects of deposition temperature on the properties of hermetically carbon-coated optical fibers prepared by thermal chemical vapor deposition, Surf. Coat. Technol. 202 (2007) 798. 14. A.K. Geim and K.S. Novoselov, The rise of graphene, Nat. Mater. 6 (2007) 183. 15. B.G. Kim and H.J. Choi, Graphyne: Hexagonal network of carbon with versatile Dirac cones, Phys. Rev. B 86 (2012) 115435. 16. N. McEvoy, N. Peltekis, S. Kumar, E. Rezvani, H. Nolan, G.P. Keeley, W.J. Blau, and G.S. Duesberg, Synthesis and analysis of thin conducting pyrolytic carbon films, Carbon 50 (2012) 1216. 17. N. Yoshizawa, H. Tada, and Y. Katsuyama, Strength improvement and fusion splicing for carbon-coated optical fiber, J. Lightwave Technol. 9 (1991) 417. 18. C.F. Powell, J.H. Oxley, and J.M.Jr. Blocher, Vapor Deposition, John Wiley and Sons, New York (1966). 19. H.O. Pierson and M.L. Lieberman, The chemical vapor deposition of carbon on carbon fibers, Carbon 13 (1975) 159. 20. P.Y. Chen, S.T. Shiue, and H.Y. Lin, Effects of substrate size on properties of carbon coatings on glass cylinder substrates prepared by thermal chemical vapor deposition, Thin Solid films 518 (2010) 2883. 21. S.S. Chen, S.T. Shiue, K.J. Cheng, P.Y. Chen, and H.Y. Lin, Minimization of conical particles in carbon coatings of optical fibers prepared by thermal chemical vapor deposition, Opt. Eng. 47 (2008) 045005-1. 22. M.L. Lieberman, Proceedings of the Third International Conference on Chemical Vapor Deposition, The American Nuclear Society (1972). 23. J.S. Lewis, W.J. Lackey, and S. Vaidyaraman, Model for prediction of matrix microstructure for carbon/carbon composites prepared by forced flow-thermal gradient CVI, Carbon 35 (1997) 103. 24. D. Chen, L.H. Tang, and J.H. Li, Graphene-based materials in electrochemistry, Chem. Soc. Rev. 39 (2010) 3157. 25. M. Pumera, Electrochemistry of graphene: new horizons for sensing and energy storage, Chem. Rec. 9 (2009) 211. 26. V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker, and S. Seal, Graphene based materials: Past, present and future, Prog. Mater. Sci. 56 (2011) 1178. 27. Y.B. Zhang, Y.W. Tan, H.L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry''s phase in graphene, Nature 438 (2005) 201. 28. K.S. Novoselov, Z. Jiang, Y. Zhang, S.V. Morozov, H.L. Stormer, and U. Zeitler, Room-temperature quantum Hall effect in graphene, Science 315 (2007) 1379. 29. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, and I.V. Grigorieva, Two-dimensional gas of massless Dirac fermions in graphene, Nature 438 (2005) 197. 30. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, and S.V. Dubonos, Control of graphene''s properties by reversible hydrogenation: evidence for graphane, Science 306 (2004) 666. 31. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, and F. Miao, Superior thermal conductivity of single-layer graphene, Nano Lett. 8 (2008) 902. 32. C. Lee, X. Wei, J.W. Kysar, and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science 321 (2008) 385. 33. S. Gilje, S. Han, M. Wang, K.K. Wang, and R.B. Kaner, Superior thermal conductivity of single-layer graphene, Nano Lett. 7 (2007) 3394. 34. P. Blake, P.D. Brimicombe, R.R. Nair, T.J. Booth, D. Jiang, F. Schedin, L.A. Ponomarenko, S.V. Morozov, H.F. Gleeson, E.W. Hill, A.K. Geim, and K.S. Novoselov, Graphene-based liquid crystal device, Nano Lett. 8 (2008)1704. 35. X. Wang, L. Zhi, and K. Mullen, Transparent, conductive graphene electrodes for dye-sensitized solar cells, Nano Lett. 8 (2008) 323. 36. S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, and R.S. Ruoff, Graphene-based composite materials, Nature 442 (2006) 282. 37. M.D. Stoller, S. Park, Y. Zhu, J. An, and R.S. Ruoff, Graphene-based ultracapacitors, Nano Lett. 8 (2008) 3498. 38. G.K. Dimitrakakis, E. Tylianakis, and G.E. Froudakis, Pillared graphene: A new 3-D network nanostructure for enhanced hydrogen storage, Nano Lett. 8 (2008) 3166. 39. A.K. Geim, Graphene: Status and prospects, Science 324 (2009) 1530. 40. W.S. Hummers and R.E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc. 80 (1958) 1339. 41. G. Eda, G. Fanchini, and M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material, Nature Nanotechnol. 3 (2008) 270. 42. H.A. Becerril, J. Man, Z. Liu, R.M. Stoltenberg, Z. Bao, and Y. Chen, Evaluation of solution-processed reduced graphene oxide films as transparent conductors, ACS Nano 2 (2008) 463. 43. B. Athanasios, D.G. Bourlinos, P. Dimitrios, S. Tamas, S. Anna, and D. Imre, Graphite oxide:  Chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids, Langmuir 19 (2003) 6050. 44. H.J. Shin, K.K. Kim, A. Benayad, S.M. Yoon, H.K. Park, and I.S. Jung, Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance, Adv. Funct. Mater. 19 (2009) 1987. 45. H.C. Schniepp, J.L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonso, and D.H. Adamson, Functionalized single graphene sheets derived from splitting graphite oxide, J. Phys. Chem. B 110 (2006) 8535. 46. X.L. Li, G.Y. Zhang, X.D. Bai, X.M. Sun, X.R. Wang, and E. Wang, Highly conducting graphene sheets and Langmuir–Blodgett films, Nat. Nanotech. 3 (2008) 538. 47. C. Berger, Z.M. Song, T.B. Li, X.B. Li, A.Y. Ogbazghi, R. Feng, Z.T. Dai, A.N. Marchenkov, E.H. Conrad, P.N. First, and W.A. de Heer, Ultrathin epitaxial graphite:  2D electron gas properties and a route toward graphene-based nanoelectronics, J. Phys. Chem. B 108 (2004) 19912. 48. J. Penuelas, A. Ouerghi, D. Lucot, C. David, J. Gierak, and H. Estrade-Szwarckopt, Surface morphology and characterization of thin graphene films on SiC vicinal substrate, Phys. Rev. B 79 (2009) 033408. 49. Z. Chen, W. Ren, B. Liu, L. Gao, S. Pei, Z.S. Wu, J. Zhao, and H.M. Cheng, Bulk growth of mono- to few-layer graphene on nickel particles by chemical vapor deposition from methane, Carbon 48 (2010) 3543. 50. P.R. Somani, S.P. Somani, and M. Umeno, Planer nano-graphenes from camphor by CVD, Chem. Phys. Lett. 430 (2006) 56. 51. J. Vaari, J. Lahtinen, and P. Hautojarvi, The adsorption and decomposition of acetylene on clean and K-covered Co (0001), Catal. Lett. 44 (1997) 43. 52. D.E. Starr, E.M. Pazhetnov, A.I. Stadnichenko, A.I. Boronin, and S.K. Shaikhutdinov, Carbon films grown on Pt (111) as supports for model gold catalysts, Surf. Sci. 600 (2006) 2688. 53. J. Coraux, A.T. Ndiaye, C. Busse, and T. Michely, Structural coherency of graphene on Ir (111), Nano Lett. 8 (2008) 565. 54. X. Li, W. Cai, L. Colombo, and R.S. Ruoff, Evolution of graphene growth on Ni and Cu by carbon isotope labeling, Nano Lett. 9 (2009) 4268. 55. K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, and K.S. Kim, Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature 457 (2009) 706. 56. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, and V. Bulovic, Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition, Nano Lett. 9 (2009) 30. 57. L.S. Panchakarla, A. Govindaraj, and C.N.R. Rao, Boron and nitrogen-doped carbon nanotubes and graphene, Inorganica Chimica Acta 363 (2010) 4163. 58. M. Ohring, “Materials science of thin films deposition and structure”, Academic press, New Jersey (2002). 59. D.S. Rickerby and A. Matthews, “Advanced surface coatings: a handbook of surface engineering”, Chapman and Hall Inc., New York, (1991). 60. S. Veprek, Heterogeneous reactions in non-isothermal low pressure plasmas: Preparative aspects and applications, Pure Appl. Chem. 48 (1976) 163. 61. S.M. Ojha, Plasma-enhanced chemical vapor deposition of thin films, Physics of thin films 12 (1982) 237. 62. G.R. Nowling, S.E. Babayan, V. Jankovic, and RF. Hicks, Remote plasma-enhanced chemical vapour deposition of silicon nitride at atmospheric pressure, Plasma Sources Sci. Technol. 11 (2002) 97. 63. S.E. Alexandrov, M.L. Hitchman, and S. Shamlian, Formation of silicon nitride films by remote plasma‐enhanced chemical vapour deposition, Adv. Mater. Optics Electronics 2 (1993) 301. 64. E.J. Bae, Y.S. Min, D. Kang, J.H. Ko, and W. Park, Low-temperature growth of single-walled carbon nanotubes by plasma enhanced chemical vapor deposition, Chem. Mater. 17 (2005) 5141. 65. G. Lucovsky, D.V. Tsu, and S.S. Kim, Formation of thin film dielectrics by remote plasma-enhanced chemical-vapor deposition (remote PECVD), Appl. Surf. Sci. 39 (1989) 33. 66. M.J. Kushner, Simulation of the gas‐phase processes in remote‐plasma‐activated chemical‐vapor deposition of silicon dielectrics using rare gas–silane‐ammonia mixtures, J. Appl. Phys. 71 (1992) 4173. 67. L.H. Lai, S.T. Shiue, and H.Y. Lin, Effects of radio-frequency powers on the properties of carbon coatings on optical fibers prepared by thermal chemical vapor deposition enhanced with inductively coupled plasma, Vacuum 87 (2013) 141. 68. L.H. Lai, K.C. Wu, and S.T. Shiue, Effects of radio-frequency power on the properties of carbon thin films prepared by thermal chemical vapor deposition enhanced with remote inductively-coupled-plasma using acetylene/nitrogen mixtures, Thin Solid Films, article in press. 69. W.N. Li, Y.S. Ding, S.L. Suib, J.F. DiCarlo, and F.S. Galasso, Controlling the growth of CVD carbon from methane on transition metal substrates, Surf. Coat. Technol. 190 (2005) 366. 70. S.T. Shiue, P.Y. Chen, R.H. Lee, T.S. Chen, and H.Y. Lin, Effects of deposition parameters on characteristics of carbon coatings on optical fibers prepared by thermal chemical vapor deposition, Surf. Coat. Technol. 205 (2010) 780. 71. R.H. Lee, L.H. Lai, and S.T. Shiue, Effects of different acetylene/nitrogen ratios on characteristics of carbon coatings on optical fibers prepared by thermal chemical vapor deposition, Thin Solid Films 518 (2010) 7267. 72. L.H. Lai, K.J. Huang, S.T. Shiue, J.T. Chang, and J.L. He, Effects of ethylene/nitrogen mixtures on thermal chemical vapor deposition rates and microstructures of carbon films, J. Electrochem. Soc. 159 (2012) D367. 73. R. Kleber, M. Weiler, A. Kruger, S. Sattel, G. Kunz, K. Jung, and H. Ehrhardt, Influence of ion energy and flux composition on the properties of plasma-deposited amorphous carbon and amorphous hydrogenated carbon films, Diam. Relat. Mater. 2 (1993) 246. 74. S. Pirzada, J.J. Liu, F.Li, B. Demczyk, and D. Spaulding, Effect of precursor on overcoat properties in ion beam carbon process, J. Appl. Phys. 91 (2002) 7562. 75. M. Umeno and S. Adhikary, Diamond-like carbon thin films by microwave surface-wave plasma CVD aimed for the application of photovoltaic solar cells, Diam. Relat. Mater. 14 (2005) 1973. 76. D.C. Ghimire, S. Adhikari, H.R. Aryal, S.M. Mominuzzamn, T. Soga, T. Jimbo, H. Uchida, and M. Umeno, Effects of ethylene gas flow rate on optoelectrical properties of nitrogenated thin amorphous carbon films grown by microwave surface wave plasma CVD, Diam. Relat. Mater. 17 (2008) 1724. 77. O. Guise, H. Marbach, J. Levy, J. Ahner, and J. T. Yates Jr., Electron-beam-induced deposition of carbon films on Si(1 0 0) using chemisorbed ethylene as a precursor molecule, Surf. Sci. 571 (2004) 128. 78. J. Niu, L. Zhanga, Z. Zhang, D. Liu, Y. Liu, and Z. Feng, Deposition of hydrogenated amorphous carbon nitride films by dielectric barrier discharge plasmas, Appl. Surf. Sci. 256 (2010) 6887. 79. M. Szwarc, The dissociation energy of the first N–H bond in ammonia, J. Chem. Phys. 17 (1949) 505. 80. E. J. Cukauskas, W. L. Carter, and S. B. Qadri, Superconducting and structure properties of niobium nitride prepared by rf magnetron sputtering, J. Appl. Phys. 57 (1985) 2538. 81. T. Otani and M. Hirata, High rate deposition of silicon nitride films by APCVD, Thin Solid Films 442 (2003) 44. 82. R.P. Parikh and R.A. Adomaitis, An overview of gallium nitride growth chemistry and its effect on reactor design: Application to a planetary radial-flow CVD system, J. Cryst. Growth 286 (2006) 259. 83. V. Woods and N. Dietz, InN growth by high-pressures chemical vapor deposition: Real-time optical growth characterization, Mater. Sci. Eng. B 127 (2006) 239. 84. M. Jurzecka, S. Kluska, S. Jonas, H. Czternastek, and K. Zakrzewska, RF PECVD deposition of amorphous a-SixNy:H layers for application in solar cells, Vacuum 82 (2008) 1128. 85. M. H. Kang, D. S. Kim, A. Ebong, B. Rounsaville, A. Rohatgi, G. Okoniewska, and J. Hong, The study of silane-free SiCxNy film for crystalline silicon solar cells, J. Electrochem. Soc. 156 (2009) H495. 86. S. Hofmann, B. Kleinsorge, C. Ducati, A. C. Ferrari, and J. Robertson, Low-temperature plasma enhanced chemical vapour deposition of carbon nanotubes, Diam. Relat. Mater. 13 (2004) 1171. 87. V. I. Merkulov, M. A. Guillorn, D. H. Lowndes, and M. L. Simpson, Shaping carbon nanostructures by controlling the synthesis process, Appl. Phys. Lett. 79 (2001) 1178. 88. M. Regmi, M.F. Chisholm, and G. Eres, The effect of growth parameters on the intrinsic properties of large-area single layer graphene grown by chemical vapor deposition on Cu, Carbon 50 (2012) 134. 89. Material safety data sheet of hydrogen, http://avogadro.chem.iastate.edu/msds/hydrogen.pdf (2014.06.30). 90. Wikipedia (Hydrogen), http://en.wikipedia.org/wiki/Hydrogen (2014.06.30). 91. S.M. Kim, A. Hsu, Y.S. Lee, M. Dresselhaus, T. Palacios, K.K. Kim, and J. Kong, The effect of copper pre-cleaning on graphene synthesis, Nanotechnol. 24 (2014) 365602. 92. Stanford research systems, RGA operating manual and programming reference, http://www.thinksrs.com/downloads/PDFs/Manuals/RGAm.pdf (2014.06.30). 93. K. Matsumoto, Y. Hirata, S. Sameshima, and N. Matsunaga, Thermal decomposition of ammonia over nickel/gadolinium-doped ceria cermet, J. Ceram. Soc. Jpn. 116 (2008) 486. 94. D.B. Willams and C.B. Carter, Transmission electron microscopy-A textbook for materials science, Plenum press, New York and London (1996). 95. Y.Y. Wang, Z.H. Ni, T. Yu, Z.X. Shen, H.M. Wang, Y.H. Wu, W. Chen, and A.T.S. Wee, Raman studies of monolayer graphene: The substrate effect, J. Phys. Chem. C 112 (2008) 10637. 96. V.T. Nguyen, H.D. Le, V.C. Nguyen, T.T.T. Ngo, D.Q. Le, X.N. Nguyen, and N.M. Phan, Synthesis of multi-layer graphene films on copper tape by atmospheric pressure chemical vapor deposition method, Adv. Nat. Sci.: Nanosci. Nanotechnol. 4 (2013) 035012. 97. M.S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, Perspectives on carbon nanotubes and graphene Raman spectroscopy, Nano Lett. 10 (2010) 751. 98. N. Shimodaira and A. Masui, Raman spectroscopic investigations of activated carbon materials, J. Appl. Phys. 92 (2002) 902. 99. A.C. Ferrari and J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Phys. Rev. B 61 (2000) 14095. 100. A.C. Ferrari and J. Robertson, Origin of the 1150 cm-1 Raman mode in nanocrystalline diamond, Phys. Rev. B 63 (2001) 121405-1. 101. A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, and U. Poschl, Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information, Carbon 43 (2005) 1731. 102. K. Norinaga and O. Deutschmann, Detailed kinetic modeling of gas-phase reactions in the chemical vapor deposition of carbon from light hydrocarbons, Ind. Eng. Chem. Res. 46 (2007) 3547. 103. K. Norinaga, O. Deutschmann, N. Saegusa, and J.I. Hayashi, Analysis of pyrolysis products from light hydrocarbons and kinetic modeling for growth of polycyclic aromatic hydrocarbons with detailed chemistry, J. Analytical Appl. Pyrolysis 86 (2009) 148. 104. G.F. Froment and K.B. Bischoff, Chemical Reactor Analysis and Design, John Wiley and Sons, New York (1979). 105. K. Norinaga and K.J. Huttinger, Kinetics of surface reactions in carbon deposition from light hydrocarbons, Carbon 41 (2003) 1509. 106. A. Becker and K.J. Huttinger, Chemistry and kinetics of chemical vapor deposition of pyrocarbon-IV pyrocarbon deposition from methane in the low temperature regime, Carbon 36 (1998) 213. 107. A. Becker and K.J. Huttinger, Chemistry and kinetics of chemical vapor deposition of pyrocarbon-II pyrocarbon deposition from ethylene, acetylene and 1,3-butadiene in the low temperature regime, Carbon 36 (1998) 177. 108. C.W. Bauschlicher Jr. and A. Ricca, Mechanisms for polycyclic aromatic hydrocarbon PAH growth, Chem. Phys. Lett. 326 (2000) 283. 109. S.A. Mitchell and P.A. Hacket, Chemical reactivity of iron atoms near room temperature, J. Chem. Phys. 93 (1990) 7822. 110. T.J. Hirt and H.B. Palmer, Kinetics of deposition of pyrolytic carbon films from methane and carbon suboxide, Carbon 1 (1963) 65. 111. L.S. Kershenbaum and J. Martin, Kinetics of the nonisothermal pyrolysis of propane, A. I. Ch. E. Journal 13 (1967) 148. 112. C. Descamps, G. L. Vignoles, O. Feron, F. Langlais, and J. Lavenac, Correlation between homogeneous propane pyrolysis and pyrocarbon deposition, J. Electrochem. Soc. 148 (2001) C695. 113. W. Benzinger, A. Becker, and K.J. Huttinger, Chemistry and kinetics of chemical vapour deposition of pyrocarbon: I. Fundamentals of kinetics and chemical reaction engineering, Carbon 34 (1996) 957.
摘要: 
In thermal chemical vapor deposition (CVD) process, the characteristics of obtained pyrolytic carbon films are influenced by many factors including the precursor gas, mass flow rate of inlet gas, deposition temperature, and working pressure. Therefore, kinetics of thermal CVD of pyrolytic carbon films using CH4/N2, C2H2/N2, C2H4/N2, CH4/NH3, C2H2/NH3, and C2H4/NH3 are acquired. During the deposition process, a residual gas analyzer is used to measure the partial pressures of residual gases. Among these mixtures, the deposition rate of using C2H4/NH3 mixture is the largest one, therefore, its activation energy is also lower than those of the rest. On the other hand, the deposition rate of using C2H2/N2 mixture is the smallest one, and thus, its activation energy is larger than those of the rest. The precursor gas N2 only serves as the dilute gas in the thermal CVD processes. Notably, NH3 acts as both etcher and competing adsorber, which produces the suppressing effect. Moreover, it was found that the amount of contaminants in the outlet of thermal CVD system using CH4 is small; the amount of contaminants in the outlet of thermal CVD system using C2H4 is moderate, and the amount of contaminants in the outlet of thermal CVD system using C2H2 is large. In CVD process, hydrogen is a necessary precursor gas for graphene synthesis. Nevertheless, hydrogen is ease to leak and combustible, so its safety must be concerned. Therefore, a relatively safe technique of graphene synthesis is proposed in this study. Alternatively, the multi-layer graphene is successfully fabricated using thermal CVD enhanced with remote inductively coupled plasma system. However, the quality and uniformity of the obtained graphene are still need to be improved.

當以熱化學氣相沉積法製備熱裂解碳薄膜時,熱裂解碳薄膜之性質會受前驅氣體、氣體總流量、沉積溫度及工作壓力影響。因此,本論文便使用熱化學氣相沉積法製備熱裂解碳薄膜,並研究甲烷/氮氣、乙炔/氮氣、乙烯/氮氣、甲烷/氨氣、乙炔/氨氣、乙烯/氨氣以上六種混合氣體之沉積機制。而在製程當中會使用殘餘氣體分析儀量測氣相中殘餘氣體之分壓。在這些混合氣體中,沉積速率最快的是乙烯/氨氣這組,其亦具有最低的活化能。另一方面,沉積速率最慢的是乙炔/氮氣這組,其具有最高的活化能。氮氣在沉積的過程中只扮演稀釋氣體的角色。而氨氣則是扮演蝕刻及吸附競爭者的角色,因此產生了碳薄膜的抑制效應。當混合氣體使用甲烷時,製程完畢後會有較少的汙染物殘餘,乙烯的汙染物殘量則是介於甲烷跟乙炔中間,而乙炔有最多的汙染物殘餘。當使用化學氣相沉積法製備石墨烯時,氫氣為一不可或缺之前驅氣體。然而因其具有自燃之危險,故安全問題需要仔細的考量。因此,本論文便提出一相對安全製備石墨烯之技術。另一方面,本論文成功的使用遠端感應耦合電漿輔助熱化學氣相沉積法製備出多層石墨烯。但是維持石墨烯的品質及均一性依然是一大挑戰。
URI: http://hdl.handle.net/11455/91980
其他識別: U0005-0707201416553700
Rights: 不同意授權瀏覽/列印電子全文服務
Appears in Collections:材料科學與工程學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-103-8099066002-1.pdf6.87 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.