Please use this identifier to cite or link to this item:
http://hdl.handle.net/11455/91983
標題: | 以電化學法控制銅和銅銀複合奈米結構之形貌、大小及其在生化感測之應用 Shape and Size Control of Cu and Cu/Ag Composite Nanostructures by Electrochemical Methods for Biosensing Applications |
作者: | 楊家榮 Chia-Jung Yang |
關鍵字: | 電化學;氮化鈦;奈米結構;感測器;electrochemistry;TiN;nanostructure;sensor | 引用: | 1. Lindsay, S. M. In Introduction to Nanoscience, Oxford University Press Inc. New York, 2010, Chapter 2, pp. 41-45. 2. Alivisatos, A. P. Semiconductor Clusters, Nanocrystals, and Quantum Dots, Science 1996, 271, 933-937. 3. Liu, K.; Jiang, L. Multifunctional Integration: From Biological to Bio-Inspired Materials, ACS Nano 2011, 5, 6786-6790. 4. Iijima, S. Helical Microtubules of Graphitic Carbon, Nature 1991, 354, 56-58. 5. Kastner, M. A. Artificial Atoms, Phys. Today 1993, 46, 24-31. 6. El-Sayed, M. A. Some Interesting Properties of Metals Confined in Time and Nanometer Space of Different Shapes, Acc. Chem. Res. 2001, 34, 257-264. 7. Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M. A. Chemistry and Properties of Nanocrystals of Different Shapes, Chem. Rev. 2005, 105, 1025-1102. 8. Jain, P. K.; Huang, X.; El-Sayed, I.; El-Sayed, M. A. Review of Some Interesting Surface Plasmon Resonance-Enhanced Properties of Noble Metal Nanoparticles and Their Applications to Biosystems, Plasmonics 2007, 2, 107-118. 9. Hao, E.; Schatz, G. C.; Hupp, J. T. Synthesis and Optical Properties of Anisotropic Metal Nanoparticles, J. Fluoresc. 2004, 14, 331-341. 10. Sun, S.; Murray, C. B.; Weller, D.; Folks, L.; Moser, A. Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices, Science 2000, 287, 1989-1992. 11. Nirmal, M.; Brus, L. Luminescence Photophysics in Semiconductor Nanocrystals, Acc. Chem. Res. 1999, 32, 407-414. 12. Jacobs, K.; Zaziski, D.; Scher, E. C.; Herhold, A. B.; Alivisatos, A. P. Activation Volumes for Solid-Solid Transformation in Nanocrystals, Science 2001, 293, 1803-1806. 13. Michler, P.; Imamoglu, A.; Mason, M. D.; Carson, P. J.; Strouse, G. F.; Buratto, S. K. Quantum Correlation Among Photons From a Single Quantum Dot at Room Temperature, Nature 2000, 406, 968-970. 14. Noguez, C. Surface Plasmons on Metal Nanoparticles: The Influence of Shape and Physical Environment, J. Phys. Chem. C 2007, 111, 3806-3819. 15. Murry, C. B.; Kagan, C. R.; Bawendi, M. G. Self-Organization of CdSe Nanocrystals Into Three-Dimensional Quantum Dot Superlattices, Science 1995, 270, 1335-1338. 16. Jin, R.; Cao, Y. W.; Mirkin, C. A.; Kelly, K. L.; Schatz, G. C.; Zheng, J. G. Photoinduced Conversion of Silver Nanospheres to Nanoprisms, Science 2001, 294, 1901-1903. 17. Wiley, B. J.; Im, S. H.; Li, Z.-Y.; McLellan, J.; Siekkinen, A.; Xia, Y. Maneuvering the Surface Plasmon Resonance of Silver Nanostructures Through Shape-Controlled Synthesis, J. Phys. Chem. B 2006, 110, 15666-15675. 18. Jain, P. K.; El-Sayed, I.; El-Sayed, M. A. Au Nanoparticles Target Cancer, Nanotoday 2007, 2, 18-29. 19. Durr, N. J.; Larson, T.; Smith, D. K.; Korgel, B. A.; Sokolov, K.; Ben-Yaker, A. Two-Photon Luminescence Imaging of Cancer Cells Using Molecularly Targeted Gold Nanorods, Nano Lett. 2007, 7, 941-945. 20. Kim, D.; Park, S.; Lee, J. H.; Jeong, Y. Y.; Jon, S. Antibiofouling Polymer-Coated Gold Nanoparticles as a Contrast Agent for In Vivo X-ray Computed Tomography Imaging, J. Am. Chem. Soc. 2007, 129, 7661-7665. 21. El-Sayed, I.; Huang, X.; El-Sayed, M. A. Selective Laser Photo-Thermal Therapy of Epithelial Carcinoma Using Anti-EGFR Antibody Conjugated Gold Nanoparticles, Cancer Lett. 2006, 239, 129-135. 22. Eghtedari, M.; Oraevsky, A.; Copland, J. A.; Conjusteau, N. A. High Sensitivity of In Vivo Detection of Gold Nanorods Using a Laser Optoacoustic Imaging System, Nano Lett. 2007, 7, 1914-1918. 23. Gould, I. R.; Lenhard, J. R.; Muenter, A. A.; Godleski, S. A.; Farid, S. Two-Electron Sensitization: A New Concept for Silver Halide Photography, J. Am. Chem. Soc. 2000, 122, 11934-11943. 24. Welch, C. M.; Compton, R. G. The Use of Nanoparticles in Electroanalysis: A Review, Anal. Bioanal. Chem. 2006, 384, 601-619. 25. Kerner, M. J. The optics of Colloidal Silver: Something Old and Something New, Colloid Interface Sci. 1985, 105, 297-314. 26. Shacham-Diamand, Y.; Inberg, A.; Sverdlov, Y.; Croitoru, N. Electroless Silver and Silver with Tungsten Thin Films for Microelectronics and Microelectromechanical System Applications, J. Electrochem. Soc. 2000, 147, 3345-3349. 27. Taurozzi, J. S.; Tarabara, V. V. Silver Nanoparticle Arrays on Track Etch Membrane Support as Flow-Through Optical Sensors for Water Quality Control, EnViron. Eng. Sci. 2007, 24, 122-137. 28. Fleischman, M.; Hendra, P. J.; McQuilla, A. J. Raman Spectra of Pyridine Adsorbed at a Silver Electrode, Chem. Phys. Lett. 1974, 26, 163-166. 29. Gutes, A.; Carraro, C.; Maboudian, R. Silver Nanodesert Rose as a Substrate for Surface-Enhanced Raman Spectroscopy, ACS Appl. Mater. Interfaces 2009, 1, 2551-2555. 30. Wang, C. H.; Sun, D. C.; Xia, X. H. One-Step Formation of Nanostructured Gold Layers via a Galvanic Exchange Reaction for Surface Enhancement Raman Scattering, Nanotechnology 2006, 17, 651-657. 31. Yoon, I.; Kang, T.; Choi, W.; Kim, J.; Yoo, Y.; Joo, S. W.; Park, Q. H.; Ihee, H.; Kim, B. Single Nanowire on a Film as an Efficient SERS-Active Platform, J. Am. Chem. Soc. 2009, 131, 758-762. 32. Dick, L. A.; McFarland, A. D.; Haynes, C. L.; Van Duyne, R. P. Metal Film over Nanosphere (MFON) Electrodes for Surface-Enhanced Raman Spectroscopy (SERS): Improvements in Surface Nanostructure Stability and Suppression of Irreversible Loss, J. Phys. Chem. B 2002, 106, 853-860. 33. Buffat, P. A. Electron diffraction and HRTEM studies of multiply-twinned structures and dynamical events in metal nanoparticles: facts and artefacts, Mater.Chem. Phys. 2003, 81, 368-375. 34. Frenken, J. W. M.; Stoltze, P. Are Vicinal Metal Surfaces Stable?, Phys. Rev. Lett. 1999, 82, 3500-3503. 35. Read, C. G.; Steinmiller, E. M. P.; Choi, K.-S. Atomic Plane-Selective Deposition of Gold Nanoparticles on Metal Oxide Crystals Exploiting Preferential Adsorption of Additives, J. Am. Chem. Soc. 2009, 131, 12040-12041. 36. Link, S.; Wang, Z. L.; El-Sayed, M. A. Alloy Formation of Gold−Silver Nanoparticles and the Dependence of the Plasmon Absorption on Their Composition, J. Phys. Chem. B 1999, 103, 3529-3533. 37. Kim, M.; Lee, K. Y.; Jeong, G. H.; Jang, J.; Han, S. W. Fabrication of Au-Ag Alloy Nanoprisms with Enhanced Catalytic Activity, Chem. Lett. 2007, 36, 1350-1351. 38. Reetz, M. T.; Helbig, W. Size-Selective Synthesis of Nanostructured Transition Metal Clusters, J. Am. Chem. Soc. 1994, 116, 7401-7402. 39. Kim, J. H.; Chung, H. W.; Lee, T. R. Preparation and Characterization of Palladium Shells with Gold and Silica Cores, Chem. Mater. 2006, 18, 4115-4120. 40. Huang, J.; Vongehr, S.; Tang, S.; Lu, H.; Shen, J.; Meng, X. Ag Dendrite-Based Au/Ag Bimetallic Nanostructures with Strongly Enhanced Catalytic Activity, Langmuir 2009, 25, 11890-11896. 41. Guha, S.; Roy, S.; Banerjee, A. Fluorescent Au@Ag Core-Shell Nanoparticles with Controlled Shell Thickness and HgII Sensing, Langmuir 2011, 27, 13198-13205. 42. Zhang, Q. B.; Xie, J. P.; Lee, J. Y.; Zhang, J. X.; Boothroyd, C. Synthesis of Ag@AgAu Metal Core/Alloy Shell Bimetallic Nanoparticles with Tunable Shell Compositions by a Galvanic Replacement Reaction, Small 2008, 4, 1067-1071. 43. Yang, J. H.; Lee, J. Y.; Zhang, Q. B.; Zhou, W. J.; Liu, Z. L. Carbon-Supported Pseudo-Core–Shell Pd–Pt Nanoparticles for ORR with and without Methanol, J. Electrochem. Soc. 2008, 155, 776-781. 44. Shao, M. H.; Sasaki, K.; Marinkovic, N. S.; Zhang, L. H.; Adzic, R. R. Synthesis and Characterization of Platinum Monolayer Oxygen-Reduction Electrocatalysts with Co–Pd Core–Shell Nanoparticle Supports, Electrochem. Commun. 2007, 9, 2848-2853. 45. Jin, Y.; Shen, Y.; Dong, S. Electrochemical Design of Ultrathin Platinum-Coated Gold Nanoparticle Monolayer Films as a Novel Nanostructured Electrocatalyst for Oxygen Reduction, J. Phys. Chem. B 2004, 108, 8142-8147. 46. Guo, S.; Wang, E. Functional Micro/Nanostructures: Simple Synthesis and Application in Sensors, Fuel Cells, and Gene Delivery, Acc. Chem. Res. 2011, 44, 491-500. 47. Haas, I.; Shanmugam, S.; Gedanken, A. Pulsed Sonoelectrochemical Synthesis of Size-Controlled Copper Nanoparticles Stabilized by Poly(N-vinylpyrrolidone), J. Phys. Chem. B 2006, 110, 16947-16952. 48. Siegfrid, M. J.; Choi, K.-S. Electrochemical Crystallization of Cuprous Oxide with Systematic Shape Evolution, Adv. Mater. 2004, 16, 1743-1746. 49. Radi, A.; Pradhan, D.; Sohn, Y.; Leung, K. T. Nanoscale Shape and Size Control of Cubic, Cuboctahedral, and Octahedral Cu-Cu2O Core-Shell Nanoparticles on Si(100) by One-Step, Templateless, Capping-Agent-Free Electrodeposition, ACS Nano 2010, 4, 1553-1560. 50. Zhou, X. J.; Harmer, A. J.; Heinig, N. F.; Leung, K. T. Parametric Study on Electrochemical Deposition of Copper Nanoparticles on an Ultrathin Polypyrrole Film Deposited on a Gold Film Electrode, Langmuir 2004, 20, 5109-5113. 51. Huang, X.-J.; Yarimaga, O.; Kim, J.-H.; Choi, Y.-K. Substrate Surface Roughness-Dependent 3-D Complex Nanoarchitectures of Gold Particles From Directed Electrodeposition, J. Mater. Chem. 2009, 19, 478-483. 52. Li, Y.; Shi, G. Electrochemical Growth of Two-Dimensional Gold Nanostructures on a Thin Polypyrrole Film Modified ITO Electrode, J. Phys. Chem. B 2005, 109, 23787-23793. 53. Li, Y.; Lu, G.; Wu, X.; Shi, G. Electrochemical Fabrication of Two-Dimensional Palladium Nanostructures as Substrates for Surface Enhanced Raman Scattering, J. Phys. Chem. B 2006, 110, 24585-24592. 54. Huang, Y.-F.; Shih, H.-S.; Lin, C.-W.; Xu, P.; Williams, D. J.; Ramos, K. J.; Hooks, D. E.; Wang, H.-L. Morphology Control of Cu Crystals on Modified Conjugated Polymer Surfaces, Cryst. Growth Des. 2012, 12, 1778-1784. 55. Liu, R.; Oba, F.; Bohannan, E. W.; Ernst, F.; Switzer, J. A. Shape Control in Epitaxial Electrodeposition: Cu2O Nanocubes on InP (001), Chem. Mater. 2003, 15, 4882-4885. 56. Sun, W.; Li, X.; Qin, P.; Jiao, K. Electrodeposition of Co Nanoparticles on the Carbon Ionic Liquid Electrode as a Platform for Myoglobin Electrochemical Biosensor, J. Phys. Chem. C 2009, 113, 11294-11300. 57. Njagi, J.; Chernov, M. M.; Leiter, J. C.; Andreescu, S. Amperometric Detection of Dopamine in Vivo with an Enzyme Based Carbon Fiber Microbiosensor, Anal. Chem. 2010, 82, 989-996. 58. Osaka, T.; Komaba, S.; Amano, A. Highly Sensitive Microbiosensor for Creatinine Based on the Combination of Inactive Polypyrrole with Polyion Complexes, J. Electrochem. Soc. 1998, 145, 406-408. 59. Yang, C.-J.; Lu, F.-H. Shape and Size Control of Cu Nanoparticles by Tailoring the Surface Morphologies of TiN-Coated Electrodes for Biosensing Applications, Langmuir 2013, 29, 16025-16033. 60. Reetz, M. T.; Winter, M.; Breinbauer, R.; Thurn-Albrecht, T.; Vogel, W. Size-Selective Electrochemical Preparation of Surfactant-Stabilized Pd-, Ni- and Pt/Pd Colloids, Chem. Eur. J. 2001, 7, 1084-1094. 61. Zach, M. P.; Ng, K. H.; Penner, R. M. Molybdenum Nanowires by Electrodeposition, Science 2000, 290, 2120-2123. 62. Li, Q.; Brown, M. A.; Hemminger, J. C.; Penner, R. M. Luminescent Polycrystalline Cadmium Selenide Nanowires Synthesized by Cyclic Electrodeposition/Stripping Coupled with Step Edge Decoration, Chem. Mater. 2006, 18, 3432-3441. 63. Menke, E. J.; Li, Q.; Penner, R. M. Bismuth Telluride (Bi2Te3) Nanowires Synthesized by Cyclic Electrodeposition/Stripping Coupled with Step Edge Decoration, Nano Lett. 2004, 4, 2009-2014. 64. Li, Q.; Walter, E. C.; van der Veer, W. E.; Murray, B. J.; Newberg, J. T.; Bohannan, E. W.; Switzer, J. A.; Hemminger, J. C.; Penner, R. M. Molybdenum Disulfide Nanowires and Nanoribbons by Electrochemical/Chemical Synthesis, J. Phys. Chem. B 2005, 109, 3169-3182. 65. Siegfried, M. J.; Choi, K.-S. Directing the Architecture of Cuprous Oxide Crystals during Electrochemical Growth, Angew. Chem. Ind. Ed. 2005, 44, 3218-3223. 66. Siegfried, M. J.; Choi, K.-S. Elucidation of an Overpotential-Limited Branching Phenomenon Observed During the Electrocrystallization of Cuprous Oxide, Angew. Chem. Ind. Ed. 2008, 120, 374-378. 67. Bard, A. J.; Faulkner, L. R. In Electrochemical Methods, Fundamentals and Applications, John Wiley & Sons, New York, 1980, Chapter 5, pp. 156-169. 68. Sakar, D. K.; Zhou, X. J.; Tannous, A.; Louie, M.; Leung, K. T. Growth of Self-Assembled Copper Nanostructure on Conducting Polymer by Electrodeposition, Solid State Commun. 2003, 125, 365-368. 69. Zhang, X.; Shi, F.; Yu, X.; Liu, H.; Wang, Z.; Jiang, L.; Li, X. Polyelectrolyte Multilayer as Matrix for Electrochemical Deposition of Gold Clusters: Toward Super-Hydrophobic Surface, J. Am. Chem. Soc. 2004, 126, 3064-3065. 70. Qian, L.; Liu, Y.; Song, Y.; Li, Z.; Yang, X. Electrodeposition of Pt Nanoclusters on the Surface Modified by Monolayer Poly(amidoamine) Dendrimer Film, Electrochem. Commun. 2005, 7, 1209-1212. 71. Qian, L.; Yang, X. Polyamidoamine Dendrimers-Assisted Electrodeposition of Gold-Platinum Bimetallic Nanoflowers, J. Phys. Chem. B 2006, 110, 16672-16678. 72. Wang, P.; Li, F.; Huang, X.; Li, Y.; Wang, L. In Situ Electrodeposition of Pt Nanoclusters on Glassy Carbon Surface Modified by Monolayer Choline Film and Their Electrochemical Applications, Electrochem. Commun. 2008, 10, 195-199. 73. Siegfried, M. J.; Choi, K.-S. Elucidating the Effect of Additives on the Growth and Stability of Cu2O Surfaces via Shape Transformation of Pre-Grown Crystals, J. Am. Chem. Soc. 2006, 128, 10356-10357. 74. Zhang, H.; Xu, J.-J.; Chen, H.-Y. Shape-Controlled Gold Nanoarchitectures: Synthesis, Superhydrophobicity, and Electrocatalytic Properties, J. Phys. Chem. C 2008, 112, 13886-13892. 75. Ko, W.-Y.; Chen, W.-H.; Cheng, C.-Y.; Lin, K.-J. Architectural Growth of Cu Nanoparticles Through Electrodeposition, Nanoscale Res. Lett. 2009, 4, 1481-1485. 76. Li, L.-L.; Chang, C.-W.; Wu, H.-H.; Shiu, J.-W.; Wu, P.-T.; Diau, E. W.-G. Morphological Control of Platinum Nanostructures for Highly Efficient Dye-sensitized Solar Cells, J. Mater. Chem. 2012, 22, 6267-6273. 77. Xiao, Z.-L.; Han, C. Y.; Kwok, W.-K.; Wang, H.-H.; Welp, U.; Wang, J.; Crabtree, G. W. Tuning the Architecture of Mesostructures by Electrodeposition, J. Am. Chem. Soc. 2004, 126, 2316-2317. 78. Lopez, C. M.; Choi, K.-S. Electrochemical Synthesis of Dendritic Zinc Films Composed of Systematically Varying Motif Crystals, Langmuir 2006, 22, 10625-10629. 79. Tian, N.; Zhou, Z.-Y.; Sun, S.-G.; Ding, Y.; Wang, Z. L. Synthesis of Tetrahexahedral Platinum Nanocrystals with High-Index Facets and High Electro-Oxidation Activity, Science 2007, 316, 732-735. 80. Shervedani, R. K.; Mehrjardi, A. H.; Zamiri, N. A Novel Method for Glucose Determination Based on Electrochemical Impedance Spectroscopy Using Glucose Oxidase Self-Assembled Biosensor, Bioelectrochemistry 2006, 69, 201-208. 81. Castillo, J.; Gaspar, S.; Leth, S.; Niculescu, M.; Mortari, A.; Bontidean, I.; Soukharev, V.; Dorneanu, S.A.; Ryabov, A.D.; Csoregi, E. Biosensors for Life Quality: Design, Development and Applications, Sensors and Actuators B 2004, 102, 179-194. 82. Liao, W.-Y.; Liu, C.-C.; Chou, T.-C. Detection of Triglyceride Using an Iridium Nano-Particle Catalyst Based Amperometric Biosensor, Analyst 2008, 133, 1757-1763. 83. Liao, W.-Y.; Liu, C.-C.; Wang, C. Detection of Lipoprotein-Associated Phospholipase A2 Using a Nano-Iridium Particle Catalyst-Based Biosensor, Sensors and Actuators B 2008, 134, 993-999. 84. Garjonyte, R.; Malinauskas, A. Amperometric Glucose Biosensor Based on Glucose Oxidase Immobilized in Poly(o-phenylenediamine) Layer, Sensors and Actuators B 1999, 56, 85-92. 85. Irhayem, E. A.; Elzanowska, H.; Jhas, A. S.; Skrzynecka, B.; Birss, V. Glucose detection based on electrochemically formed Ir Oxide Films, J. Electroanal. Chem. 2002, 538, 153-164. 86. Chaki, N. K.; Vijayamohanan, K. Self-Assembled Monolayers as a Tunable Platform for Biosensor Applications, Biosens. Bioelectron. 2002, 17, 1-12. 87. Daniels, J. S.; Pourmanda, N. Label-Free Impedance Biosensors: Opportunities and Challenges, Electroanalysis 2007, 19, 1239-1257. 88. Barsoukov, E.; Macdonald, J. R. In Impedance Spectroscopy: Theory, Experiment, and Applications 2nd Edition, Wiley, New Jersey, 2005, Chapter 1, pp. 1-26. 89. Heller, A.; Feldman, B. Electrochemical Glucose Sensors and Their Applications in Diabetes Management, Chem. Rev. 2008, 108, 2482-2505. 90. Turner, P. F.; Chem. B. In Vitro Diagnostics in Diabetes: Meeting the Challenge, Clin. Chem. 1999, 45, 1596-1601. 91. Qing, D. Y.; Keung, K. Glucose Biosensor Based on Multi-Walled Carbon Nanotube Modified Glassy Carbon Electrode, Electroanalysis 2004, 16, 1697-1703. 92. Rinken, T.; Tenno, T. Dynamic Model of Amperometric Biosensors. Characterisation of Glucose Biosensor Output, Biosens. Bioelectron. 2001, 16, 53-59. 93. Cass, A. E. G.; Davis, G.; Francis, G. D.; Hill, H. A. O.; Aston, W. J.; Higgins, I. J.; Plotkin, E. V.; Scott, L. D. L.; Turner, A. P. F. Ferrocene-Mediated Enzyme Electrode for Amperometric Determination of Glucose, Anal. Chem. 1984, 56, 667-671. 94. Bharathi, S.; Nogami, M. A Glucose Biosensor Based on Electrodeposited Biocomposites of Gold Nanoparticles and Glucose Oxidase Enzyme, Analyst 2001, 126, 1919-1922. 95. Zhang, S.; Wang, N. Immobilization of Glucose Oxidase on Gold Nanoparticles Modified Au Electrode for the Construction of Biosensor, Sensors and Actuators B 2005, 109, 367-374. 96. Werner S. In Optical Spectroscopy in Chemistry and Life Sciences, WILEY-VCH, 2004, Chapter 8, pp. 296-300. 97. Fleischmann, M.; Hendra, P. J.; McQuillan, A. J. Raman Spectra of Pyridine Adsorbed at a Silver Electrode, Chem. Phys. Lett., 1974, 26, 163-166. 98. Jeanmaire, D. L.; Van Duyne, R. P. Surface Raman Spectroelectrochemistry: Part I. Heterocyclic, Aromatic, and Aliphatic Amines Adsorbed on the Anodized Silver Electrode, J. Electroanal. Chem. 1977, 84, 1-20. 99. Albrecht, M. G.; Creighton, J. A. Anomalously Intense Raman Spectra of Pyridine at a Silver Electrode, J. Am. Chem. Soc. 1977, 99, 5215-5217. 100. Wang, Y.; Yan, B.; Chen, L. SERS Tags: Novel Optical Nanoprobes for Bioanalysis, Chem. Rev. 2013, 113, 1391-1428. 101. Haynes, C. L.; McFarland, A. D.; Van Duyne, R. P. Surface-Enhanced Raman Spectroscopy, Anal. Chem. 2005, 77, 338A-346A. 102. Garcia-Leis, A.; Garcia-Ramos, J. V.; Sanchez-Cortes, S. Silver Nanostars with High SERS Performance, J. Phys. Chem. C 2013, 117, 7791-7795. 103. Stamplecoskie, K. G.; Scaiano, J. C.; Tiwari, V. S.; Anis, H. Optimal Size of Silver Nanoparticles for Surface-Enhanced Raman Spectroscopy, J. Phys. Chem. C 2011, 115, 1403-1409. 104. Hatab, N. A.; Hsueh, C.-H.; Gaddis, A. L.; Retterer, S. T.; Li, J.-H.; Eres, G.; Zhang, Z.; Gu, B. Free-Standing Optical Gold Bowtie Nanoantenna with Variable Gap Size for Enhanced Raman Spectroscopy, Nano Lett. 2010, 10, 4952-4955. 105. Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment, J. Phys. Chem. B 2003, 107, 668-677. 106. Kim, K.; Lee, H. S. Effect of Ag and Au Nanoparticles on the SERS of 4-Aminobenzenethiol Assembled on Powdered Copper, J. Phys. Chem. B 2005, 109, 18929-18934. 107. Stranahan, S. M.; Titus, E. J.; Willets, K. A. SERS Orientational Imaging of Silver Nanoparticle Dimers, J. Phys. Chem. Lett. 2011, 2, 2711-2715. 108. Zhu, C.; Meng, G.; Huang, Q.; Huang, Z.; Chu, Z.; Au Hierarchical Micro/Nanotower Arrays and Their Improved SERS Effect by Ag Nanoparticle Decoration, Crystal Growth & Design, 2011, 11, 748-752. 109. Pierson, H. O. In Handbook of Refractory Carbides and Nitrides: Properties, Characteristics, Processing, and Applications, Noyes Publications, New Jersey ,1996, pp. 193. 110. Thornton, J. A. Influence of Apparatus Geometry and Deposition Conditions on the Structure and Topography of Thick Sputtered Coatings, J. Vac. Sci. Technol., 1974, 11, 666-670. 111. Su, C.-Y.; Pan, C.-T.; Liou, T.-P.; Chen, T.-P.; Lin, C.-K. Investigation of the Microstructure and Characterizations of TiN/CrN Nanomultilayer Deposited by Unbalanced Magnetron Sputter Process, Surf. Coat. Technol., 2008, 203, 657-660. 112. He, C.; Zhang, J.; Wang, J.; Ma, G.; Zhao, D.; Cai, Q. Effect of Structural Defects on Corrosion Initiation of TiN Nanocrystalline Films, Appl. Surf. Sci., 2013, 276, 667-671. 113. Powder Diffraction File. PDF-2 CDROM, International Center for Diffraction Data, Newtown Square, PA 2000. 114. Fukami, K.; Nakanishi, S.; Yamasaki, H.; Tada, T.; Sonoda, K.; Kamikawa, N.; Tsuji, N.; Sakaguchi, H.; Nakato, Y. General Mechanism for the Synchronization of Electrochemical Oscillations and Self-Organized Dendrite Electrodeposition of Metals with Ordered 2D and 3D Microstructures, J. Phys. Chem. C 2007, 111, 1150-1160. 115. Gou, L.; Murphy, C. J. Solution-Phase Synthesis of Cu2O Nanocubes, Nano Lett. 2003, 3, 231-234. 116. Huang, Y.; Wang, W.; Liang, H.; Xu, H. Surfactant-Promoted Reductive Synthesis of Shape-Controlled Gold Nanostructures, Cryst. Growth Des. 2009, 9, 858-862. 117. Zhao, N.; Qi, L. Low-Temperature Synthesis of Star-Shaped PbS Nanocrystals in Aqueous Solutions of Mixed Cationic/Anionic Surfactants, Adv. Mater. 2006, 18, 359-362. 118. Chen, S.; Carroll, D. L. Silver Nanoplates: Size Control in Two Dimensions and Formation Mechanisms, J. Phys. Chem. B 2004, 108, 5500-5506. 119. Yeh, T.-S.; Wu, J.-M.; Hu, L.-J. The Properties of TiN Thin Films Deposited by Pulsed Direct Current Magnetron Sputtering, Thin Solid Films 2008, 516, 7294-7298. 120. Meng, L.-J.; Santos, M. P. D. Characterization of Titanium Nitride films Prepared by d.c. Reactive Magnetron Sputtering at Different Nitrogen Pressures, Surf. Coat. Technol. 1997, 90, 64-70. 121. Chan, M.-H.; Lu, F.-H. Air-Based Deposition and Processing Windows of Sputtered TiN, TiNxOy, and N-Doped TiOx Thin Films, Surf. Coat. Technol. 2012, 210, 135-141. 122. Mohanty, S.; Davis, H. T.; McCormick, A. V. Complementary Use of Simulations and Free Energy Models for CTAB/NaSal Systems, Langmuir 2001, 17, 7160-7171. 123. Zhao, J.; Wang, F.; Yu, J.; Hu, S. Electro-Oxidation of Glucose at Self-Assembled Monolayers Incorporated by Copper Particles, Talanta 2006, 70, 449-454. 124. Luo, P. F.; Kuwana, T. Nickel-Titanium Alloy Electrode as a Sensitive and Stable LCEC Detector for Carbohydrates, Anal. Chem. 1994, 66, 2775-2782. 125. Jafarian, M.; Forouzandeh, F.; Danaee, I.; Gobal, F.; Mahjani, M. G. Electrocatalytic Oxidation of Glucose on Ni and NiCu Alloy Modified Glassy Carbon Electrode, J. Solid State Electrochem. 2009, 13, 1171-1179. 126. Qiu, R.; Zhang, X. L.; Qiao, R.; Li, Y.; Kim, Y. I.; Kang, Y. S. CuNi Dendritic Material: Synthesis, Mechanism Discussion, and Application as Glucose Sensor, Chem. Mater. 2007, 19, 4174-4180. 127. Tong, S.; Xu, Y.; Zhang, Z.; Song, W. Dendritic Bimetallic Nanostructures Supported on Self-Assembled Titanate Films for Sensor Application, J. Phys. Chem. C 2010, 114, 20925-20931. 128. Yin, M.; Wu, C.-K.; Lou, Y.; Burda, C.; Koberstein, J. T.; Zhu, Y.; O’Brien, S. Copper Oxide Nanocrystals, J. Am. Chem. Soc. 2005, 127, 9506-9511. 129. Shao, M.; Xu, X.; Han, J.; Zhao, J.; Shi, W.; Kong, X.; Wei, M.; Evans, D. G.; Duan, X. Magnetic-Field-Assisted Assembly of Layered Double Hydroxide/Metal Porphyrin Ultrathin Films and Their Application for Glucose Sensors, Langmuir 2011, 27, 8233-8240. 130. Wang, C.; Yin, L.; Zhang, L.; Gao, R. Ti/TiO2 Nanotube Array/Ni Composite Electrodes for Nonenzymatic Amperometric Glucose Sensing, J. Phys. Chem. C 2010, 115, 4408-4413. 131. Fang, B.; Gu, A.; Wang, G.; Wang, W.; Feng, Y.; Zhang, C.; Zhang, X. Silver Oxide Nanowalls Grown on Cu Substrate as an Enzymeless Glucose Sensor, ACS Appl. Mater. Interfaces 2009, 1, 2829-2834. 132. Meng, L.; Jin, J.; Yang, G.; Lu, T.; Zhang, H.; Cai, C. Nonenzymatic Electrochemical Detection of Glucose Based on Palladium−Single-Walled Carbon Nanotube Hybrid Nanostructures, Anal. Chem. 2009, 81, 7271-7280. 133. Wang, J.; Thomas, D. F.; Chen, A. Nonenzymatic Electrochemical Glucose Sensor Based on Nanoporous PtPb Networks, Anal. Chem. 2008, 80, 997-1004. 134. Yuan, J.; Wang, K.; Xia, X. Highly Ordered Platinum-Nanotube Arrays for Amperometric Glucose Sensing, Adv. Funct. Mater. 2005, 15, 803-809. 135. Li, Y.; Song, Y. Y.; Yang, C.; Xia, X. H. Hydrogen Bubble Dynamic Template Synthesis of Porous Gold for Nonenzymatic Electrochemical Detection of Glucose, Electrochem. Commun. 2007, 9, 981-988. 136. Tsai, Y.-C.; Hsu, P.-C.; Lin, Y.-W.; Wu, T.-M. Electrochemical deposition of Silver Nanoparticles in Multiwalled Carbon Nanotube-Alumina-Coated Silica for Surface-Enhanced Raman Scattering-Active Substrates, Electrochem. Commun. 2009, 11, 542-545. 137. Zhu, C.; Meng, G.; Huang, Q.; Huang, Z.; Chu, Z. Au Hierarchical Micro/Nanotower Arrays and Their Improved SERS Effect by Ag Nanoparticle Decoration, Cryst. Growth Des. 2011, 11, 748-752. 138. Sun, L.; Zhao, D.; Ding, M.; Xu, Z. K.; Zhang, Z.; Li, B.; Shen, D. Controllable Synthesis of Silver Nanoparticle Aggregates for Surface-Enhanced Raman Scattering Studies, J. Phys. Chem. C 2011, 115, 16295-16304. 139. Kumari, G.; Narayana, C. New Nano Architecture for SERS Applications, J. Phys. Chem. Lett. 2012, 3, 1130-1135. | 摘要: | This study focuses on the shape and size control of Cu nanoparticles by tailoring the surface morphologies of TiN thin film electrode. These Cu nanoparticles were further used to fabricate Cu/Ag composite nanostructures. TiN thin films exhibiting superior electrical and thermal conductivity, high chemical stability and hardness are of technologically important materials. The surface morphologies of TiN thin films can be varied by changing the deposition parameters during sputtering. The novelty of this research is using the surface morphologies of TiN thin films to control shape and size of Cu nanoparticles. This model system can be extended to other conductivity nitride thin films. In contrast, conventional shape and size control of metallic nanoparticles, such as variation of electrolytes and power mode was also used. The sputtering deposition parameters including the power and working pressure were varied to prepare TiN films. In this study, we obtained granular TiN films at a higher sputtering power and a lower working pressure while pyramidal TiN films at a lower sputtering power and a higher working pressure. Under the same electrodeposition conditions, smaller irregular Cu nanoparticles formed on a pyramidal TiN film and larger, octahedral Cu nanoparticles grew on a granular TiN film. In comparision, the species and concentrations of the surfactant, salts as the stabilizer, and the power mode were also varied in synthesizing Cu nanoparticles. The significant effect of the concentration of surfactant was confirmed. It contributed to the growth of the smaller, irregular Cu nanoparticles when the concentration of surfactant was higher than their critical micelle concentration (CMC). As the concentration of surfactant was lower than the CMC, cubic Cu nanoparticles were formed. Another objective for this study is to investigate the electrocatalytic abilities of Cu nanoparticles with various shapes and sizes for nonenzymatic glucose sensing. This has not been reported before. The sensitivity of the smaller, irregular Cu nanoparticles in the detection of glucose was better than that of the larger, octahedral Cu nanoparticles because of the former’s greater increase in the Cu2+-to-Cu0 ratio. We also used various sizes of Cu nanoparticles as starting materials to prepare the Cu/Ag composite nanostructures via galvanic displacement reaction. Cu/Ag core-shell structures were formed by using smaller Cu nanoparticles as the starting materials, while Cu nanoparticles/Ag nanobelts structres were made by using larger Cu nanoparticles as the starting materials. Both structures revealed the surface-enhanced Raman scattering phenomenon with Rhodamine 6G (R6G) as the probe molecule. Tailoring simply the surface morphologies of TiN thin films can control shape and size of Cu nanoparticles during electrodeposition. Different Cu/Ag composite nanostructures can be formed with various sizes of Cu nanoparticles by galvanic displacement reactions. Various shapes and sizes of Cu nanoparticles and those of Cu/Ag composite nanostructues revealed pretty good biosensing ability. This technique may be extended to other nitride thin film systems, which has great industrial applications. 本研究主要是在電沉積法中,以導電氮化鈦(TiN)薄膜為電極,利用TiN的表面形貌不同,進行銅奈米粒子的形貌與顆粒大小的控制;再利用此不同形貌與大小的銅奈米粒子進行銅銀複合材料之合成,並將兩者應用於生化感測的範疇上。TiN薄膜是相當重要的工業材料,具有優異的導電及導熱性、化學穩定性佳及硬度高等性質,且可藉由濺鍍鍍著參數的改變而調控TiN薄膜的表面結構。以TiN薄膜的形貌進行金屬奈米粒子形貌與大小的控制,是一新穎的控制方法,我們希望以此控制方式為探討模組並冀望能應用至其他導電氮化物基材,甚至拓展至不同的材質。同時,我們亦採用傳統上控制金屬奈米粒子形貌與顆粒大小的方式,藉由改變電解液的條件以及改變電壓供應方式,以作對照。 實驗上,我們利用改變濺鍍鍍著功率以及工作壓力進行TiN薄膜的鍍著,結果發現,在高鍍著功率、低工作壓力的條件下,會鍍著出顆粒狀、表面平坦的TiN薄膜;而低鍍著功率及高工作壓力的條件下,則會形成角錐狀、表面粗糙的TiN薄膜。將兩種不同形貌的TiN薄膜當成工作電極,在相同電沉積條件下,角錐狀、較粗糙的TiN薄膜,可沉積出小顆粒、不規則形狀的銅奈米粒子;而顆粒狀、較平坦的TiN薄膜,則會沉積出顆粒較大且形貌為八面體結構的銅奈米粒子。 在對照組的實驗中,我們改變界面活性劑的種類、界面活性劑的濃度、採用鹽類當成穩定劑以及改變電壓供應方式等條件。結果發現,在本系統中界面活性劑的濃度對於銅奈米粒子形貌與顆粒大小的影響較大,當界面活性劑濃度高於臨界微胞濃度(CMC)時,會產生小顆粒、不規則形狀的銅奈米粒子;但當濃度低於CMC值時,則會產生立方體的銅奈米粒子。至於界面活性劑的種類以及以鹽類當成穩定劑,其影響則不顯著。 同時,我們並研究銅奈米粒子的形貌與大小對葡萄糖分子的感測效果,這在文獻上也未有過報導。我們研究發現,小顆粒且不規則形貌的銅奈米粒子具有較高的感測效果,其靈敏度與穩定度均比大顆粒、八面體形貌的銅奈米粒子還好。這是由於小顆粒且不規則形貌的銅奈米粒子具有較高的感測效果,這是因為小顆粒且不規則形貌的銅奈米粒子在葡萄糖感測過程中,可以產生較多的Cu2+,且同時亦發現對葡萄糖的感測靈敏度與反應中產生的Cu2+/Cu0比值有關,比值越高其靈敏度相對也越高。 我們亦以不同顆粒大小的銅奈米粒子,利用伽凡尼置換反應製備銅銀複合材料。結果發現,以小顆粒的銅奈米粒子為反應物,隨著反應時間的增加會形成銅核/銀殼的複合結構;而大顆粒的銅奈米粒子,則會形成銅奈米粒子/銀奈米帶的複合結構。而我們發現,此兩種不同形貌的銅銀複合結構,包括銅核/銀殼的複合結構以及銅奈米粒子/銀奈米帶的複合結構,對於玫瑰紅6G (Rhodamine 6G, R6G)染料分子都具有表面增強拉曼訊號的現象。 本研究利用導電氮化物薄膜為電極,在電化學法中,單純地以電極的表面形貌便可控制銅奈米粒子的形貌與大小;同時我們亦證明不同大小的銅奈米粒子可藉由伽凡尼置換反應產生不同結構的銅銀複合材料,而這些不同形貌的銅奈米粒子以及銅銀複合結構,均證明能應用在生化感測上。在未來,我們希望能將此方法拓展至其他導電性金屬氮化物薄膜,亦即此法極具產業應用潛力。 |
URI: | http://hdl.handle.net/11455/91983 | 其他識別: | U0005-2106201416113100 | Rights: | 同意授權瀏覽/列印電子全文服務,2017-06-26起公開。 |
Appears in Collections: | 材料科學與工程學系 |
Files in This Item:
File | Description | Size | Format | Existing users please Login |
---|---|---|---|---|
nchu-103-8098066010-1.pdf | 9.63 MB | Adobe PDF | This file is only available in the university internal network |
TAIR Related Article
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.