Please use this identifier to cite or link to this item:
標題: 以電漿電解氧化法於TiN/Si上製備BaxSr1-xTiO3膜及其特性研究
Synthesis and characterization of BaxSr1-xTiO3 films on TiN/Si by plasma electrolytic oxidation
作者: 許弘文
Hong-Wen Hsu
關鍵字: 鈦酸鍶鋇;電漿電解氧化法;氮化鈦;barium strontium titanate;plasma electrolytic oxidation;titanium nitride
引用: 1. J. B. Park, A. F. Recum, G. H. Kenner, B. J. Kelly, W. W. Coffeen, M. F. Grether, “Piezoelectric ceramic implants,” J. Biomed. Mater. Res. 14 (1980) 269-277. 2. F. He, W. Ren, G. Liang, P. Shi, X. Wu, X. Chen,” Structure and dielectric prop-erties of barium titanate thin films for capacitor applications”, Ceram. Int. 39 (2013) 481-485. 3. 王博,鈦酸鋇晶體非均向性自繞射之研究及其光資訊處理之應用,1999,博士論文,國立中央大學光電科學研究所 4. 陳建昌,鈦酸鋇光折變晶體用於新式光學隔離器之研究,2004,碩士論文,國立中央大學光電科學研究所 5. 劉永振,鈦酸鍶鋇薄膜氣體感測器之研究,2002,碩士論文,國立雲林科技大學電子與資訊工程研究所 6. S. Agarwal, G. L. Sharma, “Humidity sensing properties of (Ba, Sr)TiO3 thin films grown by hydrothermal electrochemical method”, sensor and Actuators B 85 (2002) 205-211. 7. 莊柏昌,鈦酸鍶鋇薄膜應用於可調變微波元件之電性與物性特性探討,2008,碩士論文,國立高雄應用大學電子工程研究所 8. R. Balachandran, B. H. Ong, H. Y. Wong, K. B. Tan and M. M. Rasat, “Dielec-tric characteristics of barium strontium titanate based metal insulator metal ca-pacitor for dynamic random access memory cell”, Int. J. Electrochem. Sci. 7 (2012) 11895-11903 9. B. H. Moeckly and Y. M. Zhang, “Strontium titanate thin films for tunable YBa2Cu3O7 microwave filters”, Appl. Supercond. 11 (2001) 450-453. 10. S. Burnside, J. E. Moser, K. Brooks, and M. Gra1tzel, “Nanocrystalline mesopo-rous strontium titanate as photoelectrode material for photosensitized solar de-vices: increasing photovoltage through flatband potential engineering,” J. Phys. Chem. B 103 (1999) 9328-9332. 11. K. Eisenbeiser, J. M. Finder, Z. Yu, J. Ramdani, J. A. Curless, J. A. Hallmark, R. Droopad, W. J. Ooms, L. Salem, S. Bradshaw, and C. D. Overgaard, “Field ef-fect transistors with SrTiO3 gate dielectric on Si,” Appl. Phys. Lett. 76 (2000) 1324-1326. 12. C. T. Wu, F. H. Lu, “Electrochemical deposition of barium titanate films using a wide electrolytic voltage range,” Thin Solid Films 398-399 (2001) 621-625. 13. S. V. Gnedenkov, P. S. Gordienko, O. A. Khrisanfova, T. M. Scorobogatova, S. L. Sinebrukhov, “Formation of BaTiO3 coatings on titanium by microarc oxida-tion method” J. Mater. Sci. 37 (2002) 2263-2265 14. C. T. Wu, F. H. Lu, “Synthesis of barium titanate films by plasma electrolytic oxidation at room electrolyte temperature,” Surf. Coat. Technol. 199 (2005) 225-230. 15. W. F. Li, B. Han, J. Du, J. H. Peng, Y. H. Gao, “Structural characteristics of Ba-TiO3 films prepared by microarc oxidation,” Trans. Nonferrous Met. Soc. 16 (2006) 1041-1044 16. H. J. Song, Y. J. Park, “Fabrication of BaTiO3 films on titanium by microarc ox-idation method and improvement of bioactivity by electric poling treatment,” Mater. Lett. 61 (2007) 3473-3476. 17. J. H. Peng, W. F. Li, B. Han, F. L. Huang, J. Du, “Synthesis of tetragonal Ba-TiO3 film on Ti substrate by micro-arc oxidation,” Trans. Nonferrous Met. Soc. China. 18 (2008) 1117-1121. 18. J. L. Zeng, H. P. Teng, C. J. Yang, F. H. Lu, “Characterization and corrosion re-sistance of barium titanate films prepared on Ti underlayers by plasma electrolytic oxidation,” Journal of Chinese Corrosion Engineering 26 (2012) 99-106. 19. W. Y. Tsai, C. J. Yang, J. L. Zeng, F. H. Lu, “Synthesis and characterization of barium titanate films on Ti-coated Si substrates by plasma electrolytic oxidation,” Surf. Coat. Technol. 259 (2014) 297-301. 20. M. Wang, H. Y. Guo, W. F. Li, G. G. Zhang, “Formation of Ba0.5Sr0.5TiO3 Ferro-electric Film by Microarc Oxidation,” Surf. Coat. Technol. 42 (2013) 35-37. 21. J. L. Zeng, H. P. Teng, F. H. Lu, “Electrochemical deposition of barium titanate thin films on TiN/Si substrates,” Surf. Coat. Technol. 231 (2013) 297-300. 22. 王敏, 李文芳, “BaTiO3介電薄膜的微弧氧化製備及表面形貌” Journal of South China University of Technology, 39 (2011) 109-113. 23. 汪建民,陶瓷技術手冊(下),全華圖書,2013,797-798. 24. A. Nishat, J. Lu, Y. K. Joo, C. G. Lee, J. H. Yoon, A. Faheem, “Study on struc-tural, morphological and electrical properties of sputtered titanium nitride films under different argon gas flow,” Mater. Chem. Phys. 134 (2012) 839-844. 25. A. Bharat, H. Pradeep, “Electrochemical oxidation behavior of titanium nitride based electrocatalysts under PEM fuel cell conditions,” Electrochim. Acta. 55 (2010) 9024-9034. 26. H. Xu, X. Zhang, C. Zhang, Z. Liu, X. Zhou, S. Pang, X. Chen, S. Dong, Z. Zhang, L. Zhang, P. Han, X. Wang, G. Cui, “Nanostructured titanium Ni-tride/PEDOT:PSS composite films as counter electrodes of dye-sensitized solar cells,” Appl. Mater. Interfaces. 4 (2012) 1087-1092. 27. T. M. M. Ottakam, S. Sampath, “Electrochemical oxidation of ethanol in acid media on titanium nitride supported fuel cell catalysts,” Electrochimica Acta. 56 (2011) 3549-3554. 28. P. Roquiny, F. Bodart, G. Terwagne, “Colour control of titanium nitride coatings produced by reactive magnetron sputtering at temperature less than 100°C,” Surf. Coat. Technol. 116-119 (1999) 278-283. 29. P. H. Chan, F. H. Lu, “Low temperature hydrothermal synthesis and the growth kinetics of baTiO3 films on TiN/Si, Ti/Si, and Bulk-Ti Substrates,” J. Electrochem. Soc. 157 (2010) 130-135. 30. 余錦智,以低溫水熱法及化學電池作用於氮化鈦膜上製備鈦酸鋇膜之研究,1994/碩士論文,國立中興大學材料科學與工程學系。 31. Y. C. Chieh, C. C. Yu, F. H. Lu, “Epitaxial growth of BaTiO3 films on TiN/Si substrates by a hydrothermal-galvanic couple method,” Appl. Phys. Lett. 90 (2007). 32. C. J. Yang, D. Y. Tsai, P. H. Chan, C.T. Wu, F. H. Lu, “Hydrothermal–galvanic couple synthesis of directionally oriented BaTiO3 thin films on TiN-coated sub-strates,” Thin Solid Films 542 (2013) 108-113. 33. Y. H. Tsai, Y. C. Chieh, F. H. Lu, “Influence of Sr+2 concentrations on growth of SrTiO3 thin films synthesized by hydrothermal–galvanic couple method,” Thin Solid Films 570 (2014) 479-485. 34. S. Venigalla, P. Bendale, J. H. Adair, “Low temperature electrochemical synthe-sis and dielectric characterization of barium titanate films using nonalkali elec-trolytes,” J. Electrochem. Soc. 142 (1995) 2101-2109. 35. Mu-Hsuan Chan, Fu-Hsing Lu, “Air-based deposition and processing windows of sputtered TiN, TiNxOy, and N-doped TiOx thin films” Surf. Coat. Technol. 203 (2008) 614-618. 36. C. J. Yang, F. H. Lu, “Shape and size control of Cu nanoparticles by tailoring the surface morphologies of TiN-coated electrodes for biosensing applications” Langmuir 29 (2013) 16025-16033. 37. B. Jaffe, W. R. Cook,; H. Jaffe, Piezoelectric ceramics, William R. CooK, Jr. and Hans Jaffe Gould Inc, Cleveland, 1971. 38. R. A. Cowley, “Structural phase transitions,” Advances in physics, 29 (1980) 3-4. 39. A. C. James, Thermal and Mechanical Properties of Plasma Electrolytic Oxide Coatings, University of Cambridge, 2006. 40. A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews, S. J. Dowey, “Plasma elec-trolysis for surface engineering,” Surf. Coat. Technol. 122 (1999) 73-93. 41. P. Gupta, G. Tenhundfeld, E. O. Daigle, D. Ryabkov, “Electrolytic plasma tech-nology: Science and engineering—An overview,” Surf. Coat. Technol. 201 (2007) 8746-8760. 42. R. E. Hummel, Electronic Properties of Materials, SpringerLink, 2011. 43. 蔡汶榆,以電漿電解氧化法於Ti/Si上製備BaTiO3膜及其特性研究,2013/碩士論文,國立中興大學材料科學與工程學系。 44. 許樹恩、吳泰伯,X光繞射原理與材料結構分析,中國材料科學學會,1996 45. M. A. McCormick, E. B. Slamovich, “Microstructure development and dielectric properties of hydrothermal BaTiO3 thin films” J. Eur. Ceram. Soc. 23 (2003) 2143-2152 46. A. Wypych, I. Bobowska, M. Tracz, A. Opasinska, S. Kadlubowski, A. K. Ka-liszewska, J. Grobelny, and P. Wojciechowski, “Dielectric properties and charac-terisation of titanium dioxide” J. Nanomater. 124814 (2014) 1-9 47. S. J. Perm, N. M. ALford, A. Templeton, X. Wang, M. Xu, “Effect of porosity and grain size on the microwave dielectric properties of sintered alumina” J. Am. Ceram. Soc., 80 (1997) 1885-1888. 48. S. Venigalla, P. Bendale, and J. H. Adair, “Low temperature electrochemical synthesis and dielectric characterization of barium titanate films using nonalkali Electrolytes” J. Electrochem. Soc. 142 (1995) 2101-2109. 49. D. Bao, K. Ruan, T. Liang, X. Yao, “Structure and Electrical Properties of Bari-um Strontium Titanate Thin Films Directly Prepared on Bare Silicon Substrates by Chemical Solution Deposition” Ferroelectrics, 357 (2007) 115-120. 50. R. Z. Hou, A. Wu, P. M. Vilarinho, “Low-temperature hydrothermal deposition of (BaxSr1-x)TiO3 thin films on flexible polymeric substrates for embedded appli-cations” Chem. Mater. 21 (2009) 1214-1220. 51. 黃進益,電化學的原理及應用,高立圖書,1994。 52. Z. Wu, M. Yoshimura, “Investigations on procedures of the fabrication of barium titanate ceramic films under hydrothermal–electrochemical conditions,” Solid State Ionics 122 (1999) 161-172 53. L. Stappers, L. Zhang, B. O. Vander, J. Fransaer, “The effect of electrolyte con-ductivity on electrophoretic deposition,” J. Colloid Interface Sci. 328 (2008) 436-446. 54. S. Yoriya, N. Bao, A. G. Craig, “Titania nanoporous/tubular structures via elec-trochemical anodization of titanium: effect of electrolyte conductivity and ano-dization voltage on structural order and porosity,” J. Mater. Chem. 21 (2011) 13909-13912. 55. R. E. Riman, W. L. Suchanek, M. M. Lencka, “Hydrothermal crystallization of ceramics,” Ann. Chim. Sci. Mat. 27 (2002) 15-36. 56. R. K. Roeder, E. B. Slamovich, “Low temperature hydrothermal processing (<100''C) of stoichiometric BaxSrl-xTiO3” Thin Films and Powders, Mat. Res. Sac. 432 (1997) 195-200. 57. R. K. Roeder, E. B. Slamovich, “Stoichiometry control and phase selection in hydrothermally derived BaxSr1−xTiO3 powders,” J. Am. Ceram. Soc. 82 (1999) 1665-1675. 58. J. Zhao, X. Wang, L. Li, X. Wang, Y. Li, “Stoichiometry control and structure evolution in hydrothermally derived (Ba,Sr)TiO3 films,” Ceram. Int. 34 (2008) 1223-1227. 59. B. Ihsan, “Thermochemical data of pure substances,” VCH Verlagsgesellschaft, 1993. 60. R. Z. Hou, A. Wu, P. M. Vilarinho, “Low-temperature hydrothermal deposition of (BaxSr1-x)TiO3 thin films on flexible polymeric substrates for embedded ap-plications,” Chem. Mater. 21 (2009) 1214-1220. 61. 田福助,電化學基本原理與應用,五周出版社,1994,13-24. 62. P. Ghosh, “Colloid and interface science,” Rajkamal Eelectric Press, 2009. 63. S. Z. Steven, A. Z. Susan, Chemistry, Cengage learning, 2010, 916-917. 64. 曾珠玲,以電漿電解氧化法於TiN薄膜底材上製備鈦酸鋇膜及其特性研究,2011/碩士論文,國立中興大學材料科學與工程學系。 65. S. N. Pronkin, O. A. Petrii, G. A. Tsirlina, D. J. Schiffrin, “Size effects on the electrochemical oxidation of oxalic acid on nanocrystalline platinum,” J. Electro-anal. Chem. 480 (2000) 112–119. 66. C.A. Mart´ınez-Huitle, S. Ferro, A. De Battisti, “Electrochemical incineration of oxalic acid role of electrode material,” Electrochimica Acta 49 (2004) 4027–4034 67. W. Winter, J. Phalippou, “Solubility of Ba-Acetate in Mixed Alcoholic Solutions and its Bearing on the Synthesis of Multi-Component Gels,” J. Sol-Gel Sci. Technol., 9 (1997) 265-272. 68. S. Yoriya, G. K. Mor, S. Sharma, C. A. Grimes, “Synthesis of ordered arrays of discrete, partially crystalline titania nanotubes by Ti anodization using diethylene glycol electrolytes,” J. Mater. Chem. 18 (2008) 3332-3336. 69. S. Patil, J. R. Mahajan, M. A. More, P. P. Patil, “Influence of substrate conduc-tivity on electrochemical polymerization of O-methoxyaniline,” Mater. Sci. Eng. B 87 (2001) 134-140.
The objective of this work is to synthesize barium strontium titanate (BaxSr1-xTiO3, BST) films on TiN/Si substrate by plasma electrolytic oxidation (PEO). Through PEO, crystalline phase oxide films can be prepared in a short time. It is be-cause component of the oxide films can be modulated from the electrolyte composi-tion with different stoichiometry of Ba2 + and Sr2 + ions of BST films. When we de-posited BST films, the Ti source of BST came from TiN.
The total concentration of the electrolyte was fixed at 0.5 M of different barium hydroxide/strontium hydroxide concentration ratios and with different barium ace-tate/strontium acetate concentration ratios mixed with 2 M sodium hydroxide at 70℃.We discussed about the BST films prepared by different Ba2+/Sr2+ concentration ratio and by two types of above-mentioned electrolyte.
The BST films were synthesized at constant-voltage for 1 minute by using the electrolytes with different barium hydroxide/strontium hydroxide concentration ratios. According to the spark discharge phenomenon, X-ray diffraction patterns and field emission scanning electron microscope results, the cubic phase BST films are synthe-sized successfully. The oxide films prepared at [Ba/(Ba+Sr)]sol.=1-0.6 were pure BST films. The oxide films prepared by [Ba/(Ba+Sr)]sol.=0.6-0 had TiO2, while the out layer of films are pure BST films. The surface morphology of thsse oxide films had crater-like features. When [Ba/(Ba+Sr)]sol. decreased, the solution conductivity de-creased, and the pore size of BST films decreased. Base on the composition analysis of BST films by electron pore X-ray microanalyzer, [Sr/(Ba+Sr)]films were higher than [Sr/(Ba+Sr)]sol, it might be due to the lower Gibbs free energy of forming SrTiO3, compared with BaTiO3. The dielectric measurements showed that the BST films de-posited by HR-TiN(178 ± 5 μΩ-cm) is better than deposited by LR-TiN(76 ± 1 μΩ-cm).
As the total concentration of 0.5 M with different barium acetate/strontium ace-tate concentration ratios mixed with 2 M sodium hydroxide was used to synthesize BST films, the voltage of spark discharge increased, but the pore size, thickness and relative intensity of BST decreased. It might be because that the electrolyte had more different types of ions (e.g. Na+,CH3COO- and OH-), causing electrostatic double layer effect that influences the mobility of ions.

故綜合上述,以總濃度0.5 M之不同氫氧化鋇/氫氧化鍶電解液濃度比例及總濃度0.5 M之不同醋酸鍶/醋酸鋇濃度比例混合2 M氫氧化鈉之電解液在70℃下反應,探討電解液中不同Ba2+/Sr2+濃度比例生成BST膜的差異及不同種類電解液生成BST膜間的差異。
定電壓模式及反應時間1分鐘下以總濃度0.5 M之不同氫氧化鍶/氫氧化鋇電解液濃度比例製備BST膜,由反應過程中具火花放電的現象、X光繞射分析儀及場發射掃描式電子顯微鏡分析實驗的結果判斷,已成功利用電漿電解氧化法於TiN/Si上製備出立方相的BST膜。以[Ba/(Ba+Sr)]sol.=1-0.6製備之氧化膜為純BST膜;以[Ba/(Ba+Sr)]sol.=0.6-0製備之氧化膜,為具有TiO2,最上層為純BST膜。經火花放電後的試片,其表面形貌呈現多孔及熔融狀結構,而且當電解液中Sr2+濃度越高(或Ba2+濃度越低)導電度越小,使得孔洞平均尺寸些微變小。在BST膜的成份分析上,Sr的計量比略高於電解液中Sr2+的濃度比例,目前推測可能為是因生成過程中,SrTiO3有較BaTiO3小的Gibbs自由能所造成之結果。介電特性則是以較高電阻率TiN膜(178 ± 5 μΩ-cm, HR-TiN)所製備的BST膜之結果較以低電阻率TiN膜(76 ± 1 μΩ-cm, LR-TiN)製備的BST膜好。
利用總濃度0.5 M之醋酸鋇/醋酸鍶濃度比例混合2 M氫氧化鈉電解液進行實驗時,火花放電所需的電壓較高,但生成之BST膜在膜厚、孔洞及相對強度皆較小,目前推測雖然醋酸鋇/醋酸鍶混合2 M氫氧化鈉之電解液有較高的電解液導電度,但由於電解液中離子種類及數目較多,在實驗過程中可能產生電雙層效應而影響離子的移動率,導致生成之BST膜有較低的膜厚、孔洞及相對強度。
其他識別: U0005-2808201500313100
Rights: 同意授權瀏覽/列印電子全文服務,2018-08-31起公開。
Appears in Collections:材料科學與工程學系

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-104-7102066029-1.pdf6.72 MBAdobe PDFThis file is only available in the university internal network   
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.