Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91986
標題: 以電漿電解氧化法於空氣濺鍍之ZrN/Si基材上製備氧化鋯膜及其特性分析
Synthesis and characterization of zirconia films on air-based sputtering deposited ZrN/Si by plasma electrolytic oxidation
作者: 蕭全熯
Chuan-Han Hsiao
關鍵字: 電漿電解氧化法;氮化鋯;氧化鋯;plasma electrolytic oxidation;ZrN;ZrO2
引用: 1.????? X. Nie, A. Leyland, A. Matthews, “Deposition of layered bioceramic hydroxyapatite/ TiO2 coating on titanium alloys using a hybrid technique of micro-arc oxidation and electrophoresis,” Surf. Coat. Technol., 125 (2000) 407. 2.????? J. Schreckenbach, F. Schlotting, G. Marx, W.M. Kriven, O.O. Popoola, M.H. Jilavi, and S.D. Brown, “Preparation and microstructure characterization of anodic spark deposited barium titanate conversion layers,” J. Mater. Res., 14 (1999) 1437. 3.????? A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews, and S.J. Dowey, “Plasma electrolysis for surface engineering,” Surf. Coat. Technol., 122 (1999) 73. 4.????? P. Carvalho, F. Vaz, L. Rebouta, L. Cunha, C.J. Tavares, C. Moura, E. Alves, A. Cavaleiro, Ph. Goudeau, E. Le Bourhis, J.P. Rivi?re, J.F. Pierson, O. Banakh, “Structural, electrical, optical, and mechanical characterizations of decorative ZrOxNy thin ?lms,” J. Appl. Phys., 98 (2005) 023715. 5.????? D. Wu, Z. Zhang,W. Fu, X. Fan, H. Guo, “Structure, electrical and chemical properties of zirconium nitride films deposited by dc reactive magnetron sputtering,” Appl. Phys., A 64 (1997) 593. 6.????? D. Pilloud, A.S. Dehlinger, J.F. Pierson, A. Roman, L. Pichon, “Reactively sputtered zirconium nitride coatings: structural, mechanical, optical and electrical characteristics,” Surf. Coat. Technol., 174 (2003) 338. 7.????? 汪建民,陶瓷技術手冊 (下),中華民國冶金協會,(1972),716。 8.????? A. H. Heruer, “Transformation toughening in ZrO2-containing ceramics,” J. Am. Ceram. Soc., 70, (1987) 689. 9.????? M.W. Barsoum, “Fundamentals of Ceramics,” McGraw-Hill, New York, (2000). 10.? E. H. Kisi C.J. Howard., “Crystal Structures of Zirconia Phases and their Inter-Relation,” Key Eng. Mater., 153 (1998) 1. 11.? Tzer-Shin Sheu, Tseng-Ying Tien, I-Wei Chen,. “Cubic to Tetragonal(t¢) Transformation in Zirconia Containing Systems,” J. Am. Ceram. Soc., 75 (1992) 1108. 12.? R. Arroyave, L. Kaufman, T. W. Eagar, “Thermodynamic Modeling of the Zr-O System,” Calphad., 26, (2002) 95. 13.? R. H.Doremus, Review of bioceramics, J. of Mater. Sci., 27 (1992) 287. 14.? ISO 10993-4 (2001):Identification and quantification of degradation products from ceramics. 15.? T. Kasuga, M. Yoshda, T. Uno, M. Yoshida, “Preparation of Zirconia Toughened Bioactive Glass-ceramic Composite by Sinter-hot Isostatic Pressing,” J. Am. Ceram. Soc., 75 (1992) 1103. 16.? J. M. Wu, T. S. Yeh, “Sintering of Hydroxyapatite-zirconiz Composite Materials,” J. Materials,” J. Mater. Sci., 23 (1988) 3771. 17.? X. Miao, Y. Hu, J. Liu, X. Huang, “Hydroxyapatite coating on porous zirconia,” Mater. Sci. Eng., C. 27 (2007) 257. 18.? Y. Cheng, Y. F. Zeng, “A Study of ZrN/Zr Coatings Deposited on NiTi Alloy by PIIID Technique,” IEEE Trans Plasma Sci., 34 (2006) 1105. 19.? J. Westlinder, J. Malmstrom, G. Sjoblom, J. Olsson., “Low- resistivity ZrNx metal gate in MOS devices,” Solid-State Electron., 49 (2005) 1410. 20.? L. Hu, D. Li, G. Fang, “Influence of N2:(N2 + Ar) flow ratio and substrate temperature on the properties of zirconium nitride films prepared by reactive dc magnetron sputtering,” Appl. Surf. Sci., 220 (2003) 367. 21.? D. Wu, Z. Zhang, W. Fu, X. Fan, H. Guo, “Structure, electrical and chemical properties of zirconium nitride films deposited by reactive magnetron sputtering,” Appl. Phys. A 64 (1997) 593. 22.? 曾珠玲,以電漿電解氧化法於TiN薄膜底材上製備鈦酸鋇膜及其特性研究,國立中興大學材料科學與工程學系碩士論文,(2011)。 23.? 蔡汶榆,以電漿電解氧化法於Ti/Si基材上製備鈦酸鋇膜及其特性研究,國立中興大學材料科學與工程學系碩士論文,(2013)。 24.? J.L. Zeng, H.P. Teng, F.-H. Lu, “Electrochemical deposition of barium titanate thin films on TiN/Si substrates,” Surf. Coat. Technol., 231 (2013) 297. 25.? W. Xue, Q. Zhu, Q. Jin, M. Hua, “Characterization of ceramic coatings fabricated on zirconium alloy by plasma electrolytic oxidation in silicate electrolyte,” Mater. Chem. Phys., 120 (2010) 656. 26.? Y. Cheng, E. Matykina, P. Skeldon, G. Thompson, “Characterization of plasma electrolytic oxidation on Zircaloy-4 formed in different electrolytse with AC current regime,” Electrochim. Acta., 56 (2011) 8467. 27.? E. Matykina, R. Arrabal, P. Skeldon, G.E. Thompson, P. Wang, P. Wood, “Plasma electrolytic oxidation of a zirconium alloy under AC conditions,” Surf. Coat. Technol., 204 (2010) 2142. 28.? A. Balamurugan, S. Kannan, S. Rajeswari, “Structural and electrochemical behavior of sol-gel zirconia films on 316L stainless-steel in simulated body fluid environment,” Mater. Lett., 57 (2003) 4202. 29.? D. Qiu, A. Wang, Y. Yin, “Characterization and corrosion behavior of hydroxyapatite/zirconia composite coating on NiTi fabricated by electrochemical seposition,” Appl. Surf. Sci., 257 (2007) 1774. 30.? S. Nagarajan, M. Mohana, P.Sudhagar, V. Raman, T. Nishimura, S. Kim, Y. S. Kang, N. Rajendran, “Nanocomposite Coatings on Biomedical Grade Stainless Steel for Improved Corrosion Rsistance and Biocompatibility,” ACS Appl. Mater. Interfaces., 4 (2102) 5134. 31.? M. Sandhyarani, N. Rameshbabu, K. Venkateswarlu, D. Sreekanth, Ch. Subrahmanyam, “Surface morphology, corrosion resistance and in vitro bioactivity of P containing ZrO2 films formed on Zr by plasma electrolytic oxidation,” J. Alloys Compd., 553 (2013) 324. 32.? A. Madhan Kumar, N. Rajendran, “Influence of zirconia nanoparticles on the surface and electrochemical behaviour of polypyrrole nanocomposite coated 316L SS in simulated body fluid,” Sur. Coat. Tech., 213 (2012) 155. 33.? S. Nagarajan, N. Rajendran, “Sol–gel derived porous zirconium dioxide coated on 316L SS for orthopedic applications,” J. Sol-Gel. Sci. Tech., 52 (2009) 188. 34.? Y. Xin, C. Liu, K. Huo, G. Tang, X. Tian, P. K. Chu, “Effect of deposition temperature on microstructure and corrosion resistance of ZrN thin films deposited by DC reactive magnetron sputtering,” Sur. Coat. Tech. 203 (2009) 2554. 35.? Z. Kertzman, J. Marchal, M. Suarez, M. H. Staia, P. Filip, P. Kohli, S.M. Aouadi, “Mechanical, tribological, and biocompatibility properties of ZrN-Ag nanocomposite films,” J. Biomed. Mater. Res. A., 84 (2007) 1061. 36.? R. H?bler, A. Cozza, T. L. Marcondes, R. B. Souza, F. F. Fiori, “Wear and corrosion protection of 316-L femoral implants by deposition of thin films,” Sur. Coat. Tech., 142 (2001) 1087. 37.? W. J. Chou, G. P. Yu, J. H. Huang, “Corrosion resistance of ZrN films on AISI 304 stainless steel substrate,” Sur. Coat. Tech., 167 (2003) 59. 38.? E. Matykina, R. Arrabal, P. Skeldon, G.E. Thompson, P. Wang, P. Wood, “Plasma electrolytic oxidation of a zirconium alloy under AC conditions,” Sur. Coat. Tech., 204 (2010) 2142. 39.? W. Xue, Q. Zhu, Q. Jin, M. Hua, “Characterization of ceramic coatings fabricated on zirconium alloy by plasma electrolytic oxidation in silicate electrolyte,” Mater. Chem. Phys., 120 (2010) 656. 40.? Y. Cheng, E. Matykina, P. Skeldon, G. Thompson, “Characterization of plasma electrolytic oxidation coatings on Zircaloy-4 formed in different electrolytes with AC current regime,” Electrochim. Acta., 45 (2011) 8467. 41.? Y. Cheng, E. Matykina, R. Arrabal, P. Skeldon, G. E. Thompson, “Plasma electrolytic oxidation and corrosion protection of Zircaloy-4,” Sur. Coat. Tech., 206 (2012) 3230. 42.? Y. Yan, Y. Han, C. Lu, “The effect of chemical treatment on apatite-forming ability of the macroporous zirconia films formed by micro-arc oxidation,” Appl. Sur. Sci., 254 (2008) 4833. 43.? Y. Cheng, F. Wu, E. Matykina, P. Skeldon, G. E. Thompson, “The influences of microdischarge types and silicate on the morphologies and phase compositions of plasma electrolytic oxidation coatings on Zircaloy-2,” Corros. Sci. 59 (2012) 307. 44.? 劉國雄、鄭晃忠、李勝隆、林樹均、葉均蔚,工程材料科學,全華圖書,(2009),第三版,345。 45.? M.G. Fontana and N.D. Greene, Corrosion Engineering, 2nd ed. McGraw-Hill, New York, (1978) 28. 46.? 李昆全,濺鍍法中以空氣為基底至被Zr-N-O薄膜之製程區間與特性研究,國立中興大學材料科學與工程學系碩士論文,(2013)。 47.? 柯賢文,腐蝕及其防制,全華圖書,(1995),37 48.? ASTM (2011) Standar:Standard Test Method for Sheet Resistance of Thin Metallic Films With a Collinear Four-Probe Array. 49.? T. Kokubo, and H. Myers, “How useful is SBF in predicting in vivo bone bioactivity ?,” Biomaterials, 27 (2006) 2907. 50.? P. Gupta, G. Tenhundfeld, E.O. Daigle, and D. Ryabkov, “Electrolytic plasma technology : Science and engineering-An overview,” Surf. Coat. Technol., 201 (2007) 8746. 51.? 余錦智,“以低溫水熱法及化學電池作用於氮化鈦膜上製備鈦酸鋇膜之研究”,國立中興大學材料科學與工程學系碩士論文,(2005)。 52.? L.Passerini, “Isomorphism among oxides of different tetravalent metals: CeO2-ThO2; CeO2-ZrO2; CeO2-HfO2,” Gazz. Chim. Ital., 60 (1930) 672. 53.? J.E. Hove, W.C. Riley, Modern Ceramics: Some Principles and Concepts, John Wiley & Sons, Inc., CA, 1965, pp.352. 54.? J.A. Thornon, “Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings,” J. Vac. Sci. Technol., 11 (1974) 666. 55.? ASTM G3-13 (2013) Standard : Standard Practice for Conventions Applicable to Electrochemical Measurements in Corrosion Testing. 56.? F. Mansfeld, “Tafel Slopes and Corrosion Rates from Polarization Resistance Measurements,” Corrosion, 29, (1972) 10 57.? K. B. Oldham, “Corrosion rates from polarization curves: A new method,” Corros. Sci., 13 (1973) 813. 58.? C.-L. Yang, D.-Y. Tsai, P.-H. Chan, C.-T. Wu, F.-H. Lu, “Hydrothermal-galvanic couple synthesis of directionally oriented BaTiO3 thin films on TiN-coated substrates,” Thin Solid Films, 542 (2013) 108. 59.? H. P. Teng, Y. C. Chieh, F.H. Lu, “Synthesis of BaZrO3 films on ZrN-coated Si by a novel low temperature hydrothermal-galvanic couple method,” J. Chinese Corrosion Engineering, 22 (2008) 73. 60.? ISO 10993-1 (2009):Evaluation and testing within a risk management process. 61.??? ASTM F748-06 (2010) Standard:Standard Practice for Selecting Generic Biological Test Methods for Materials and Devices.
摘要: 
Abstract
This research is to make ZrO2 films on air-based sputtering deposited ZrN/Si substrates by plasma electrolytic oxidation. The films have porous characteristics which were formed by plasma electrolytic oxidation. The ZrN is conductive and biocompatibility and also zirconia is biocompatibility. This research was combined with those properties. The influences of reaction voltage on the growth of ZrO2 films were discussed. The formation mechanism and biocorrosion resistance of ZrO2 films on ZrN/Si by plasma electrolytic oxidation were also investigated. The ZrO2 formed on nitrogen-based sputtering deposition ZrN/Si substrates by plasma electrolytic oxidation and the references synthesized ZrO2 films on Zr bulk by plasma electrolytic oxidation were also compared.
A potentiostatic mode was used to synthesize the ZrO2 films with the different voltages for 30 sec. The spark discharge, X-ray diffraction, and scanning electron microscope were used to recognize plasma electrolytic oxidation and electrochemical. The X-ray diffraction showed that tetragonal is major crystalline phase and included some monoclinic crystalline phases. The plasma was benefited to the ZrO2 films growth when spark discharge was observed by reaction process. That affection made the relatively intensity of ZrO2 films increased. Scanning electron microscope showed that the surface of ZrO2 content pores which were the main characteristics of plasma electrolytic oxidation. Spark discharge was observed during the synthesis at voltages 49-55 V, which could aide the formation crystalline phases and the surface display porous. On the other hand, electrochemical oxidation occurred at voltages below 45 V. There have no spark been observed and the surface have been displayed cracks. Voltages 46-48 V were defined the transition region from electrochemical oxidation to plasma electrolytic oxidation. Spark discharge was observed at local specimen surface by reaction process. With voltage raise the partial spark discharge increase. The contrast experiment form zirconia films on nitrogen-based sputtering deposition ZrN/Si by plasma electrolytic oxidation. The voltage 42 V spark discharge was observed and 55 V was occurred partial spark discharge. All of them were existed cracks and porous structure. The references made ZrO2 films on Zr bulk substrate were compared. We can know that reaction energy, substrate, electrolyte, power supply also can affect the reaction mechanism of plasma electrolytic oxidation.

The biocorrosion of as-deposited ZrN films and the ZrO2 films with plasma electrolytic oxidation were analyzed by Tafel test. According to the results, we know that the corrosion potential increased with raised voltage. The ZrO2 films formation at 52 V have best corrosion resistance. The ZrO2 films formed on highest 55 V content more defects for example crack and pores. The corrosion resistance was decrease with defects increase. The ZrO2 films formed on ZrN/Si substrates by plasma electrolytic oxidation have best corrosion resistance than the references reported that meant the research had development potentialities on biomaterial.

摘要
本研究是以電漿電解氧化法於空氣濺鍍之導電氮化鋯薄膜上製備功能性氧化鋯膜。電漿電解氧化法製備之薄膜具有多孔之特點,氮化鋯具有導電性及生醫相容性,氧化鋯亦具有生醫相容性,結合三者之特點,並探討不同反應電壓對於氧化鋯膜生成之影響,進而判別氧化鋯膜於氮化鋯膜上之生成機制,探討所生成氧化鋯膜之抗生物腐蝕特性。以氮氣濺鍍之氮化鋯薄膜為底材作為對照組,探討兩者製備氧化鋯之差異,再與文獻中以鋯塊材進行電漿電解氧化法製備氧化鋯膜相比較,探討氧化鋯生成差異。
不同定電壓模式反應時間30秒下製備氧化鋯膜,由反應過程中有無火花放電現象、X光繞射分析、場發式掃描電子顯微鏡分析實驗結果判斷,已成功利用電漿電解氧化法於空氣濺鍍之氮化鋯膜上製備出主要為正方相並含有少量單斜相之兩相混和氧化鋯膜,且實驗過程中有火花放電發生,電漿有利於輔助氧化膜成長,氧化鋯之相對強度會有大幅增加的趨勢,場發式掃描電子顯微鏡分析得知試片呈現多孔形貌為電漿電解氧化特徵。在反應電壓49?55 V實驗過程中有火花產生,試片表面形貌呈多孔狀,由此判斷49?55 V為電漿電解氧化反應。電壓45 V以下無火花放電產生,試片表面呈現微裂縫形貌,判斷為電化學氧化反應。反應電壓46?48 V反應過程中試片只有出現局部火花放電,隨著反應電壓提高火花放電區域亦增加,微裂縫及多孔結構兩者並存於試片表面形貌,為電化學轉變為電漿電解氧化反應機制之過渡區。利用氮氣所濺鍍之氮化鋯製備氧化鋯,電壓42 V時並未有火花放電出現,電壓55 V時有局部火花放電產生,兩者試片表面皆存在微裂縫及孔洞結構,以此判斷42?55 V應為電化學氧化轉變為電漿電解氧化反應之過渡區。與文獻以鋯塊材為反應基材比較得知,反應能量(電壓或電流密度)、基材、電解液、電源供應模式皆影響電漿電解氧化反應機制之原因。
抗生物腐蝕方面,將原始氮化鋯試片及反應生成ZrO2膜後之試片進行腐蝕分析,由抗腐蝕實驗結果得知隨著反應電壓的增加腐蝕電位提高,當反應電壓52 V時所製備之ZrO2膜之抗生物腐蝕能力最佳,最高反應電壓55 V試片內含有較多缺陷比如隙縫或者孔洞,造成抗腐蝕能力下降;與搜尋之文獻相比較,本研究利用電漿電解氧化法於氮化鋯膜上製備之氧化鋯膜,抗生物腐蝕性較佳,表示在生醫領域之應用有其發展之潛力。?
URI: http://hdl.handle.net/11455/91986
其他識別: U0005-2811201416173107
Rights: 同意授權瀏覽/列印電子全文服務,2017-08-31起公開。
Appears in Collections:材料科學與工程學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-103-7101066041-1.pdf5.67 MBAdobe PDFThis file is only available in the university internal network   
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.