Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/91996
DC FieldValueLanguage
dc.contributor薛顯宗zh_TW
dc.contributor.author康惠翔zh_TW
dc.contributor.authorHui-Hsiang Kangen_US
dc.contributor.other材料科學與工程學系所zh_TW
dc.date2015zh_TW
dc.date.accessioned2015-12-11T09:06:15Z-
dc.identifierU0005-2201201523512700zh_TW
dc.identifier.citation[1] H. Zhu, J. Wei, K. Wang, and D. Wu, Solar Energy Materials & Solar Cells, 93 (2009) 1461. [2] J. Robertson, Adv. Phy., 35 (1986) 317-374. [3] S. Aisrnberg and R. Chabot, J. Appl. Phys., 42 (1971) 2953-2958. [4] L. Holland and S. M. Ojha, Thin Solid Films, 38 (1976) 17-19. [5] J. Schwan, S. Ulrich, T. Theel, H. Roth, H. Ehrhardt, P. Becker, and S.R.P. Silva, J. Appl. Phys., 82 (1997) 6024-6030. [6] J.V. Anguita, S.R.P. Silva, and W. Young J. Appl. Phys., 88 (2000) 5175-5179. [7] R.C. Barklie, Diam. Relat. Mat., 10 (2001) 174-181. [8] W. Jacob and W. Moller, Appl. Phys. Lett., 63(1993) 1771-1773. [9] R.S. Balmer, J.R. Brandon, S.L. Clewes, H.K. Dhillon, J.M. Dodson, I.Friel, P.N. Inglis, T.D. Madgwick, M.L. Markham, T.P. Mollart, N. Perkins, G.A. Scarsbrook, D.J. Twitchen, A.J. Whitehead, J.J. Wilman, and S. M. Woollard, Journal of Physics: Condensed Matter, 21 (2009) 364221. [10] R.H. Lee, L.H. Lai, and S.T. Shiue, Effects of Propane/Nitrogen Mixtures on Thermal Chemical Vapor Deposition Rates and Microstructures of Carbon Films, Thin Solid Films518 (2010)7267 [11] H.O. Pieson, “Handbook of chemical vapor deposition (CVD)”, 2nd, Noyes, New York(1999). [12] A. Pfrang, Y.Z. Wan, and T. Schimmel, Carbon, 48 (2010) 921. [13] Liang-Hsun Lai,Sham-Tsong Shiue, and Hung-Yi Lin, Effects of radio-frequency power on the properties of carbon coatings on optical fibers prepared by thermal chemical vapor deposition enhanced with remote inductively coupled plasma, Journal of ScienceDirect, Vacuum 87(2013)141-144. [14] Liang-Hsun Lai, Kuan-Chang Wu, and Sham-Tsong Shiue, Effects of radio-frequency power on the properties of carbon thin films prepared by thermal chemical vapor deposition rnhanced with remote inductively-coupled-plasma using acctylene/nitrogen mixtures, Journal of ScienceDirect, Thin Solid Films 570(2014) 356-362. [15] 黃威遠, 利用氨氣/乙烯混合氣體製備n型非晶質電漿輔助化學氣相沉積碳薄膜,中興大學材料科學與工程學系碩士論文, (2013). [16] 李暉成, 不同製程參數對以乙烯/氨氣製備熱化學氣相沉積碳薄膜性質之影響, 中興大學材料科學與工程學系碩士論文, (2012). [17] 李任弘, 以熱化學氣相沉積法製備碳密封鍍層光纖:不同乙炔/氮氣比例、溫度、壓力及流量對碳鍍層性質之影響, 中興大學材料科學與工程學系碩士論文, (2009). [18] 盧宏柏, “殘留氣體分析儀於IC製程之應用介紹”,真空科技,9 (1994),21. [19] 潘扶民,“四極質譜儀及表面科學”,科儀新知,13 (1991) 33. [20] M. Vinante, G. Digregorio, L. Lunelli, S. Forti, S. Musso, L. Vanzetti, A. Lui, L. Pasquardini, M. Giorcelli, A. Tagliaferro, M. Anderle, and C. Pederzolli, Journal of Nanoscience and Nanotechnology, 9 (2009) 3785. [21] B.D. Cullity and S.R. Stock, “Elements of X-ray Diffraction,” 3rd Ed., Prentice Hall, New Jersey, U.S.A. (2001). [22] R.L. Mccreery, “Raman Spectroscopy for Chemical Analysis,” John Wiley and Sons, New York, U.S.A. (2000). [23] R.D. Braun, “Introduction to Instrumental Analysis”, McGraw-Hill, New York (1987). [24] A.C. Ferrari and J. Robertson, Physical Review B, 61 (2000) 14095. [25] J.F. Moulder, W.F. Stickle, P.E. Sobol, J. Chastain, and K.D. Bomben, “Handbook of X-ray Photoelectron Spectroscopy,” Perkin-Elmer Corporation, Minnesota, U.S.A. (1992). [26] X. B. Yan, T. Xu, S. S. Yue, H. W. Liu, Q. J. Xue, and S. R. Yang, “Water-repellency and surface free energy of a-C:H films prepared by heat-treatment of polymer precursor.” Diam. Relat. Mat. 14 (2005) 1342 [27] T. Young, “An Essay on the Cohesion of Fluids.” Philos. Trans. R. Soc. London, 95 (1805) 65 [28] Instruction manual of the Four-point Probe (Model: QT-50). [29] T.H. Fang and W.J. Chang, Applied Surface Science, 220 (2003) 175. [30] Y.S. Ding, W.N. Li, S. Iaconetti, X.F. Shen, J. DiCarlo, F.S. Galasso, and S.L. Suib, Surface & Coatings Technology, 200 (2006) 3041. [31] T. Jawhari, A. Roid, and J. Casado, Carbon, 33 (1995) 1561. [32] A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, and U. Poschl, Carbon, 43 (2005) 1731. [33] J.M. Vallerot, X. Bourrat, A. Mouchon, and G. Chollon, Carbon, 44 (2006) 1833. [34] S. Potgieter-Vermaak, N. Maledi, N. Wagner, J.H.P. Van Heerden, R. Van Grieken, and J.H. Potgieter, Journal of Raman Spectroscopy, 42 (2011) 123. [35] N. Shimodaira and A. Masui, Journal of Applied Physics, 92 (2002) 902 [36] L.G. Cancado, K. Takai, T. Enoki, M. Endo, Y.A. Kim, H. Mizusaki, A. Jorio, L.N. Coelho, R. Magalhaes-paniago, and M.A. Pimenta, Applied Physics Letters, 88 (2006) 163106. [37] M. Lejeune, O.D. Drouhin, J. Henocque, R. Bouzerar, A. Zeinert, and M. Benlahsen, Thin Solid Films, 389 (2001) 233. [38] M. Rusop, S.M. Mominuzzaman, T. Soga, T. Jimbo,and M. Umeno, J.Phys.: Condens. Matter 17 (2005) 1929 [39] G.L. Du, N. Celini, F. Bergaya, and F. Poncin-epaillard, Surface & Coatings Technology, 201 (2007) 5815. [40] N. Inagaki, K. Narushima, H. Hashimoto, and K. Tamura, Carbon, 45 (2007) 797. [41] H.S. Zhang, K. Komvopoulos, Journal of Applied Physics, 106 (2009) 093504. [42] P. Merel, M. Tabbal, M. Chaker, S. Moisa, and J. Margot, Applied Surface Science, 136 (1998) 105. [43] R.N. Wenzel, The Journal of Physical Chemistry, 53 (1949) 1466. [44] S. Adachi, T. Arai, and K. Kobayashi, Journal of Applied Physics, 80 (1996) 5422. [45] L. Ostrovskaya, V. Perevertailo, V. Ralchenko, A. Dementjev, and O. Loginova, Diamond and Related Materials, 11 (2002) 845. [46] C.Y. Lin, L.H. Lai, Y.X. Liu, S.T Shiue, and H.Y Lin, “Effects of Ammonia Addition on Thermal Chemical Vapor DepositionRates and Microstructures of Carbon Films,” Journal of The Electrochemical Society, volume158 (2011) issue7, D445-D451.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/91996-
dc.description.abstractThis study investigates the effects of different radio-frequency (rf) powers on the properties of carbon thin films that are prepared by thermal chemical vapor deposition enhanced with inductively coupled plasma (ICP). Ethylene (16 sccm) and Ammonia (4 sccm) were used as the precursor gases, and rf powers were set as 0W、100W、200W、300W and 400 W. The deposition temperature, working pressure, and deposition time were set to 1248 K, 4 kPa, and 2 hours. Alternatively, the residual gases, coating thickness, microstructure, surface roughness, surface property, and electrical property of carbon coatings were investigated by Residual gases analyzer, Field emission scanning electron microscopy, X-ray diffraction spectrometer, Raman scattering spectrometer, X-ray photoelectron spectrometer, Atomic force microscopy, Contact angle meter, and Four-points probe, respectively. The results indicate that if the rf power increases from 0 to 400 W, the deposition rate decreases. This is because the H2 molecules or the carbon deposited in the ICP zone increases with the rf powers. The mean crystallite size (Lc) and in-plane crystallite size (La) increase with decreasing the coating thickness, and thus, the degree of ordering increases. Moreover, when the rf-power increases, sp2 carbon atoms easily become sp3 carbon atoms, so the content of sp2 atoms in the carbon coatings decreases. Besides, the results also show that when the rf- power increases, the water contact angle (water-proofing) decreases that is resulted from the decrease of sp2 carbon atoms; the surface roughness decreases from 0 to 200 W and then increasing. As the rf power increases from 0 to 400 W, the electrical resistivity of carbon thin films increases from 12.32 to 16.23 Ω‧μm. This is because the sp2 carbon atoms decrease with increasing the rf power.en_US
dc.description.abstract本論文主要是以感應耦合式電漿輔助熱化學氣相沉積法製備碳薄膜,並探討不同射頻功率對碳薄膜各方面性質之影響。其實驗參數為使用16 sccm的乙烯以及4 sccm的氨氣做為前驅氣體,射頻功率各為0W、100W、200W、300W及400 W。沉積溫度為1248 K,沉積壓力為4 kPa,沉積時間為2小時。除此之外,本實驗也利用殘留氣體分析儀、場發式掃描電子顯微鏡、X光繞射儀、拉曼光譜儀、X光光電子能譜儀、原子力顯微鏡、接觸角儀器和四點探針儀來觀察並量測碳薄膜的殘留氣體、碳膜厚度、微觀結構、表面粗糙度、表面特性及電學性質。研究結果發現,當射頻功率由0 W增加至400 W時,碳薄膜的沉積速率會由於氫氣分子的增加或是氣體在電漿解離時就先行大幅沉積而使得碳膜沉積厚度呈現下降的趨勢;碳薄膜垂直面向及平行面向的晶粒大小(Lc)及(La)會由於薄膜的沉積速率下降,使得晶粒大小呈現上升的趨勢,晶體結構趨向有序化。而sp2碳碳雙鍵(sp2 C=C)含量比率會由於射頻功率變大,使得sp2鍵結易被打斷生成sp3鍵結而呈現下降的趨勢。除此之外,水接觸角(防水性)會由於碳碳雙鍵 (sp2 C=C)含量比率的減少而減小,表面粗糙度會隨著射頻功率的增加先減少後增加。而電阻率會由於碳碳雙鍵 (sp2 C=C)含量比率的減少,使得電阻率由12.32 Ω‧μm上升至16.23 Ω‧μm。zh_TW
dc.description.tableofcontents誌謝 i 摘要 ii ABSTRACT iv 總目錄 vi 圖目錄 x 表目錄 xiii 第1章 緒論 14 1.1 碳材料介紹 14 1.2 碳薄膜介紹 15 1.2.1 類鑽碳膜(Diamond-like Amorphous Carbon) 16 1.2.2 類石墨碳膜(Graphite-like Amorphous Carbon) 16 1.2.3 類高分子碳膜(Polymer-like Amorphous Carbon) 17 1.2.4 n型與p型碳膜(N-type and P-type amorphous Carbon) 17 1.2.5 相關應用 18 1.3 化學氣相沉積法 21 1.3.1 簡介 21 1.3.2 熱化學氣相沉積法機制 23 1.3.3 薄膜成長機制 25 1.3.4 感應耦合式電漿 26 1.4 研究動機與目的 28 第2章 實驗步驟及原理 29 2.1 試片準備與前處理 31 2.2 碳薄膜的製備 32 2.2.1 ICP感應耦合式電漿輔助熱化學氣相沉積系統之簡介 32 2.2.2 沉積參數和實驗流程 35 2.3 碳薄膜的量測 38 2.3.1 殘留氣體分析 38 2.3.2 表面形貌觀察 41 I. 場發射掃描式電子顯微鏡 (Field Emission Scanning Electron Microscope, FESEM): 41 2.3.3 微結構分析 43 I. X光繞射儀 (X-ray Diffraction, XRD) 43 II. 拉曼散射光譜儀 (Raman Scattering Spectrometry, RSS): 48 2.3.4 化學鍵結與元素分析 53 I. X光光電子能譜儀 (X-ray photoelectron spectroscopy, XPS): 53 2.3.5 表面特性量測 56 I. 原子力顯微鏡 (Atomic Force Microscopy, AFM): 56 II. 接觸角 (Contact Angle, CA): 61 2.3.6 電學性質量測 63 第3章 結果與討論 67 3.1 不同射頻功率rf的影響 67 3.1.1 殘留氣體分析 67 3.1.2 沉積厚度變化 70 3.1.3 微結構分析 73 I. X光繞射分析 73 II. 拉曼散射光譜分析 77 3.1.4 化學鍵結與元素分析 81 I. X光光電子能譜分析 81 3.1.5 表面粗糙度及抗水性質 88 I. 原子力顯微鏡量測 88 II. 接觸角量測 91 3.1.6 電學性質分析 94 第4章 結論 99 參考文獻 102 作者簡介 107zh_TW
dc.language.isozh_TWzh_TW
dc.rights同意授權瀏覽/列印電子全文服務,2017-01-28起公開。zh_TW
dc.subject碳薄膜zh_TW
dc.subject薄膜zh_TW
dc.subject感應耦合式電漿zh_TW
dc.subjectcarbon thin filmen_US
dc.subjectthin filmen_US
dc.subjectICPen_US
dc.title利用乙烯/氨氣混合氣體以感應耦合式電漿輔助熱化學氣相沉積法製備碳薄膜:不同電漿射頻功率對碳薄膜性質之影響zh_TW
dc.titleEffects of radio-frequency power on the properties of carbon thin films prepared by thermal chemical vapor deposition enhanced with remote inductively coupled plasma using ethylene/ammonia mixturesen_US
dc.typeThesis and Dissertationen_US
dc.date.paperformatopenaccess2017-01-28zh_TW
dc.date.openaccess2017-01-28-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1zh_TW-
item.grantfulltextrestricted-
item.cerifentitytypePublications-
item.openairetypeThesis and Dissertation-
item.fulltextwith fulltext-
Appears in Collections:材料科學與工程學系
Files in This Item:
File Description SizeFormat Existing users please Login
nchu-104-5101066025-1.pdf3.47 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.