Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/9199
DC FieldValueLanguage
dc.contributor吳國光zh_TW
dc.contributor.author翁浩耿zh_TW
dc.contributor.authorWeng, Hao-Gengen_US
dc.contributor.other電機工程學系所zh_TW
dc.date2012en_US
dc.date.accessioned2014-06-06T06:42:50Z-
dc.date.available2014-06-06T06:42:50Z-
dc.identifierU0005-2308201215142600en_US
dc.identifier.citation[1] M. Engels, Wireless OFDM Systems, Kluwer Academic publishers, Jan. 2002 [2] J. G. Proakis, Digital Communication. 4th ed., McGraw-Hill, 2001. [3] Harry L.Van Trees, “Detection, Estimation, and Modulation Theory”, John Wiley & Sons Inc, 2001 [4] S. M. Kay, Modern Spectral Estimation. Englewood Cliffs, NJ: Prentice-Hall, 1988. [5]Yong Soo Cho, Jaekwon Kim, Won Young Yang, Chung-Gu Kang“MIMO-OFDM Wireless Communications With Matlab” Nov. 16, 2010 [6] B. R. Saltzberg, “Performance of an efficient parallel data transmission system,” IEEE Trans. Commun. Technol., vol. COM-15, pp. 805-81 I , Dec. 1967. [7] S. B. Weinstein and P. M. Ebert, “Data transmission by frequency multiplexing using the discrete Fourier transform,” IEEE Trans. Commun. Technol.. vol. COM-19, pp. 628-634, Oct. 1971. [8] Muquent, B; Zhengdao Wang ; Giannakis , G.B.;de Courville, M.; Duhamel, P. “Cyclic prefixing or zero padding for wireless multicarrier transmissions’’ IEEE Trans. Commun., vol. 50, Dec. 2002 [9] J.J. van de Beek, M. Sandell, M. Isaksson and P.O. Borjesson, “Low-Complex Frame Synchronization in OFDM Systems, ” IEEE Int. Conf. Uniuersal Personal Commun., pp. 982-986., Nov. 1995. [10] D. Matiæ, “OFDM as a possible modulation technique for multimedia applications in the range of mm waves,” TUD-TVS, Oct. 1998 [11] S. Coleri, M. Ergen, A. Puri, and A. Bahai, “Channel Estimation Techniques Based on Pilot Arrangement in OFDM Systems,” in Proc. IEEE on Broadcast, 2002, Vol. 48, pp. 223- 229. [12] P. Y. Tsai, and T. D. Chiueh, “ Frequency-domain interpolation-based channel estimation in pilot-aided OFDM systems,” in Proc. IEEE Vehic. Tech. Conf. (VTC), 2004, pp. 420 - 424. [13] R. Gr¨unheid, H. Rohling, J. Ran, E. Bolinth, and R. Kern, “Robust Channel Estimation in Wireless LANs for Mobile Environments,” in Proc. IEEE Vehic. Tech. Conf. (VTC), Sept. 2002, pp. 1545-1549. [14] J. Zhu, and W. Lee, “ Channel estimation with power-controlled pilot symbols and decision-directed reference symbols,” in Proc. IEEE Vehic. Tech. Conf. (VTC), 2003, pp.1268 - 1272. [15] S. Balasubramanian, B. B. Farhang, and V. J. Mathews, “ Pilot embedding for channel estimation and tracking in OFDM systems,” in Proc. IEEE Global Telecommunications Conf, 2004, pp. 1244 - 1248. [16] S. Coleri, M. Ergen, A. Puri, A. Bahai, “Channel estimation techniques based on pilot arrangement in OFDM Systems”, IEEE Trans. On Broadcasting, 2002 [17] H.-K. Song, Y.-h. You, J.-H. Paik, and Y.-S. Cho, “Frequency-Offset Synchronization and Channel Estimation for OFDM-Based Transmission,” IEEE Commun. Lett, vol. 4, pp. 95-97, Mar. 2000. [18] R. J. Lyman, and W. W. Edmonson, “Decision-Directed Tracking of Fading Channels Using Linear Prediction of the Fading Envelope,” in Proc. IEEE Asilomar Conf on Signal Processing Systems and Computers, vol. 2, 1999, pp. 1154-1158. [19] J. Ran, R. Gr¨unheid, H. Rohling, E. Bolinth and R. Kern, “Decision-directed Channel Estimation Method for OFDM Systems with High Velocities,” in Proc. IEEE Vehic. Tech. Conf. (VTC), 2003, pp. 2358-2361. [20] T. Kella, “Decision-directed Channel Estimation for Supporting Higher Terminal Velocities in OFDM Based WLANs,” in Proc. IEEE Global Telecommunications Conf, 2003, pp. 1306-1310. [21] H. Wang and P. Chang, “On verifying the first-order Markovian assumption for a Rayleigh fading channel model,” IEEE Trans. Veh. Technol., vol. 45, no. 2, pp. 353-357, May 1996. [22] P. H.-Y. Wu and A. Duel-Hallen, “Multiuser detectors with disjoint Kalman channel estimators for synchronous CDMA mobile radio channels,” IEEE Trans. Commun., vol. 48, no. 5, pp. 752-756, May 2000. [23] L. Lindbom, A. Ahlen, M. Sternad, and M. Falkenstrom, “Tracking of time-varying mobile radio channels- part II: a case study,” IEEE Trans. on Commun., vol. 50, no. 1, pp.52156-167, Jan. 2002 [24] K. E. Baddour and N. C. Beaulieu, “Autoregressive modeling for fading channel simulation,” IEEE Trans. Wireless Commun., vol. 4, no. 4, pp. 1650-1662, Jul. 2005. [24] Z. Liu, X. Ma, and G. B. Giannakis, “Space-time coding and Kalman filtering for time-selective fading channels,” IEEE Trans. Commun., vol. 50, no. 2, pp. 183-186, Feb 2002. [25] Jun-Han Oh and Jong-Tae Lim “ Two-Step Channel Estimation Scheme for OFDM Systems over Fast Rayleigh Fading Channels’’ IEEE Communications letters,vol.14, no. 6, June 2010 p.545 [26] F. Sanzi, S. Jelting, and J. Speidel, “A comparative study of iterative channel estimators for mobile OFDM systems,” IEEE Trans. Wireless Commun., vol. 2, no. 5, pp. 849-859, Sep. 2003. [27]Sinem Coleri, Mustafa Ergen, Anuj Puri, and Ahmad Bahai “Channel Estimation Techniques Based on Pilot Arrangement in OFDM Systems”IEEE Transansactions on Broadcasting, Vol. 48, no. 3, Sep .2002. [28] J.-J. van de Beek, O. Edfors, M. Sandell, and S. K. Wilson, “On Channel Estimation in OFDM Systems,” in Proc. 45th IEEE Vehicular Technology Conf., Chicago, IL, pp. 815-819, July 1995. [29] Seyed Alireza Banani, and Rodney G. Vaughan “OFDM With Iterative Blind Channel Estimation ” IEEE Transansactions on Vehicular Technology, Vol. 59,no. 9, Nov. 2010 [30] C.C Cheng and D.C. Chang, “Improved time-domain channel tracking algorithms for mobile OFDM applications,” in IEEE 4th VTS Asoa Pacific Wireless Communication Symposium(APWCS 2007), Hsinchu, Aug. 2007.en_US
dc.identifier.urihttp://hdl.handle.net/11455/9199-
dc.description.abstract在OFDM系統下,獲得通道訊息狀態為一件非常重要的事。然而在快速衰減環境下影響,傳統上必須藉由傳送大量的訓練符號,使得接收端能夠進行通道估計,以取得通道訊息。然而,傳送大量的訓練符號,將會降低系統傳輸效率。在此論文中,我們將探討基於決策回授之通道估計方法(DDCE),針對決策結果之正確率,來進行資料篩選,並選取正確率夠高的決策結果,來進行通道估計,以改進決策所造成的錯誤延續效應。針對快速衰減通道,為改進資料篩選的效能,我們也將提出結合通道預測之資料篩選處理。實驗結果顯示,要篩選出正確率較高的資訊仍然需要獲得較準確的初始估計通道。我們提出一個新的方法篩選出可靠的檢測結果並且在使用預測通道來提高初始通道。最後模擬的結果表示,我們提出的算法可以篩選出更多正確的資訊用於通道估計,並因此具有比現有算法更好的性能。zh_TW
dc.description.abstractIn OFDM systems, channel state information is important is important for the receiver to recover transmitted data from channel degraded signals. In order to enable the receiver to obtain the channel information, known training symbols will be transmitted, and the number of training symbols increases with the Doppler frequency .However, the transmission of a large number of training symbols will reduce the transmission efficiency. Decision directed channel estimation (DDCE),has been proposed to reduce the number of training symbols by performing channel estimation based on the temporarily detected data, which can be obtained based on the latest channel estimate, The performance of DDCE is restricted by the turns of temporarily detected data, which may even propagate to affect succeeding data detection and channel estimation. In this thesis, we will investigate the error propagation problem of DDCE and propose methods to solve this problem. Previous researches on improving the performance of DDCE extract detected data of high reliability for channel estimation, instead of using all detection results. However the computation of probability of correctness for extracting detection results in previous researches still requires the transmission of pilot data to obtain initial channel information. We will propose a new method for extracting reliable detection results by incorporating channel prediction in the evaluation of correct detection probability. Simulation results demonstrate that at the same even detection probability, the proposed algorithm can detect a larger number of data for channel estimation, and thus has better performance than existing algorithms.en_US
dc.description.tableofcontents目次 中文摘要………................................................................................................. i 英文摘要..............................................................................................................ii 目次......................................................................................................................iii 圖目次..................................................................................................................v 第一章 序論……………………………………………………………………1 1.1 前言……………………………………………………………………1 1.2 研究動機………………………………………………………………1 1.3 論文結構………………………………………………………………2 第二章 OFDM 系統基本架構………………………………….……………..3 2.1正交分頻多工(OFDM)系統概念介紹………………………..………..3 2.2 OFDM系統架構…………………………………………….………….5 2.3保護區間(Guard Interval)和循環字首(Cyclic Prefix)…………………7 第三章 通道估計演算法………………………………………………………..9 3.1引領式的通道估計………………………………………………………9 3.1.2 Block-type pilot 配置………………….……………………….10 3.1.3 Comb-type pilot 配置…………………………………………..11 3.2 LS演算法………………………………………………………………11 3.3 通道內插計算方法……………………………………………………13 3.4 通道追蹤(DDCE)演算法……………………………………………..14 3.5 通道預測演算法………………………………………………………15 3.6 兩階段通道估計演算法………………………………………………18 第四章 兩階段式疊代估計技術…………………………………….………...22 4.1 不同引領訊號的形式…………………………………………….…...22 4.2 採用疊代的通道估計方式……………………………………….…...24 4.3 採用不同篩選條件的通道估計方式………………………………....29 4.3.1 較嚴謹的篩選條件……………………………………….…….29 4.3.2 改良式的兩階段式疊代估計技術………………………..……31 第五章 結論……………………………………………………………………35 參考文獻………………………………………………………………………..36zh_TW
dc.language.isozh_TWen_US
dc.publisher電機工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2308201215142600en_US
dc.subject通道估計zh_TW
dc.subjectchannel estimationen_US
dc.subject決策回授之通道估計zh_TW
dc.subjectDDCEen_US
dc.title在OFDM系統下快速衰落通道的兩階段通道估計方法zh_TW
dc.titleTwo-Step Channel Estimation Scheme for OFDM Systems over Fast Fading Channelsen_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1zh_TW-
item.grantfulltextnone-
Appears in Collections:電機工程學系所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.