Please use this identifier to cite or link to this item:
標題: 反應磁控共濺鍍系統沉積鈦酸鋅薄膜之微結構及其特性研究
Microstructure and Characteristics of Zinc Titanate Thin Films by Reactive Magnetron Co-sputtering
作者: 黃彥霖
Yen-Lin Huang
關鍵字: 鈦酸鋅;相變化;介電特性;光觸媒;穿透式電子顯微鏡;Zinc titanate;Phase transformation;Dielectric properties;Photocatalyst;TEM
引用: [1] C. F. Shih, W. M. Li, M. M. Lin, K. T. Hong, C. Y. Hsiao, and C. L. Lee, “Sintering of ZnO and TiO2 nanostructures,” Electrochem. Solid St., 11 (2008) K105-K108. [2] H. T. Kim, J. D. Byun, and Y. Kim, “Microstructure and microwave dielectric properties of modified zinc titanates (II),” Mater. Res. Bull., 33 (1998) 975-986. [3] N. Obradovic, S. Filipovic, V. Pavlovic, V. Paunovic, M. Mitric, and M. M. Ristic, “Structural and electrical properties of sintered barium-zinc-titanate ceramics,” Acta. Phys. Pol. A, 120 (2011) 322-325. [4] W. H. Lu, Y. C. Lee, and P. R. Tsai, “Effect of sintering parameters on silver diffusion of (Zn,Mg)TiO3 based multilayer ceramic capacitors,” Adv. Appl. Ceram., 110 (2011) 99-107. [5] Z. S. Hong, M. D. Wei, Q. X. Deng, X. K. Ding, L. L. Jiang, and K. M. Wei, “A new anode material made of Zn2Ti3O8 nanowires: synthesis and electrochemical properties,” Chem. Commun., 46 (2010) 740-742. [6] O. Yamamoto, Y. Takeda, R. Kanno, and M. Noda, “Perovskite-type oxides as oxygen electrodes for high temperature oxide fuel cells,” Solid State Ionics, 22 (1987) 241-246. [7] J. H. Swisher, J. Yang, and R. P. Gupta, “Attrition-resistant zinc titanate sorbent for sulfur,” Ind. Eng. Chem. Res., 34 (1995) 4463-4471. [8] R. P. Gupta and W. S. O’Brien, “Desulfurization of hot syngas containing hydrogen chloride vapors using zinc titanate sorbents,” Ind. Eng. Chem. Res., 39 (2000) 610-619. [9] H. Obayashi, Y. Sakurai, and T. Gejo, “Perovskite-type oxides as ethanol sensors,” J. Solid State Chem., 17 (1976) 299-303. [10] B. C. Yadav, A. Yadav, S. Singh, and K. Singh, “Nanocrystalline zinc titanate synthesized via physicochemical route and its application as liquefied petroleum gas sensor,” Sensor. Actuat. B-chem., 177 (2013) 605-611. [11] P. Das, R. J. Butcher, and C. Mukhopadhyay, “Zinc titanate nanopowder: an advanced nanotechnology based recyclable heterogeneous catalyst for the one-pot selective synthesis of self-aggregated low-molecular mass acceptor-donor-acceptor-acceptor systems and acceptor-donor-acceptor triads,” Green Chem., 14 (2012) 1376-1387. [12] J. C. Conesa, “Band structures and nitrogen doping effects in zinc titanate photocatalysts,” Catal. Today, 208 (2013) 11-18. [13] S. F. Bartram and R. A. Slepetys, “Compound formation and crystal structure in the system ZnO-TiO2,” J. Am. Ceram. Soc., 44 (1961) 493-499. [14] F. H. Dulin and D. E. Rase, “Phase equilibria in the system ZnO-TiO2,” J. Am. Ceram. Soc., 43 (1960) 125-131. [15] O. Yamaguchi, M. Morimi, H. Kawabata, and K. Shimizu, “Formation and transformation of ZnTiO3,” J. Am. Ceramic Soc., 70 (1987) C97-C98. [16] S. Sedpho, D. Wongratanaphisan, P. Mangkorntong, N. Mangkorntong, and S. Choopun, “Preparation and characterization of zinc titanate nanostructures by oxidation reaction technique,” J. Nat. Sci., 7 (2008) 99-104. [17] H. T. Kim, S. Nahm, J. D. Byun, and Y. Kim, “Low-fired (Zn,Mg)TiO3 microwave dielectrics,” J. Am. Ceram. Soc., 82 (1999) 3476-3480. [18] C. L. Wang, W. S. Hwang, K. M. Chang, H. H. Ko, C. S. Hsi, H. H. Huang, and M. C. Wang, ” Formation and morphology of Zn2Ti3O8 powders using hydrothermal process without dispersant agent or mineralizer,” Int. J. Mol. Sci., 12 (2011) 935-945. [19] H. T. Kim, S. H. Kim, S. Nahm, J. D. Byun, and Y. H. Kim, “Low-temperature sintering and microwave dielectric properties of zinc metatitanate-rutile mixtures using boron,” J. Am. Ceram. Soc., 82 (1999) 3043-3048. [20] K. Haga, T. Ishii, J. I. Mashiyama, and T. Ikeda, “Dielectric Properties of Two-Phase Mixture Ceramics Composed of Rutile and Its Compounds,” Jpn. J. Appl. Phys., 31 (1992) 3156-3159. [21] M. R. Mohammadi and D. J. Fray, “Low temperature nanostructured zinc titanate by an aqueous particulate sol-gel route: optimisation of heat treatment condition based on Zn:Ti molar ratio,” J. Eur. Ceram. Soc., 30 (2010) 947-961. [22] Y. S. Chang, Y. H. Chang, I. G. Chen, G. J. Chen, Y. L. Chai, T. H. Fang, and S. Wu, “Synthesis, formation and characterization of ZnTiO3 ceramics,” Ceram. Int., 30 (2004) 2183-2189. [23] Y. Inaguma, A. Aimi, Y. Shirako, D. Sakurai, D. Mori, H. Kojitani, M. Akaogi, and M. Nakayama, “High-pressure synthesis, crystal structure, and phase stability relations of a LiNbO3-type polar titanate ZnTiO3 and its reinforced polarity by the second-order Jahn-Teller effect,“ J. Am. Chem. Soc., 136 (2014) 2748-2756. [24] H. K. Jun, T. J. Lee, S. O. Ryu, and J. C. Kim, ”A study of Zn-Ti-based H2S removal sorbents promoted with cobalt oxides,” Ind. Eng. Chem. Res., 40 (2001) 3547-3556. [25] L. Alonso, J. M. Palacios, and R. Moliner, “The performance of some ZnO-based regenerable sorbents in hot coal gas desulfurization long-term tests using graphite as a pore-modifier additive,” Energ. Fuel., 15 (2001) 1396-1402. [26] M. Pineda, J. L. G. Fierro, J. M. Palacios, C. Cilleruelo, E. Garcia, and J. V. Ibarra, “Characterization of zinc oxide and zinc ferrite doped with Ti or Cu as sorbents for hot gas desulphurization,” Appl. Surf. Sci., 19 (1997) 1-10. [27] Y. C. Lee, Y. L. Huang, W. H. Lee, and F. S. Shieu, Formation and transformation of ZnTiO3 prepared by sputtering process,” Thin Solid Films, 518 (2010) 7366-7371. [28] L. G. Teoh, W. H. Lu, T. H. Lin, and Y. C. Lee, “The effect of Mg dopant and oxygen partial pressure on microstructure and phase transformation of ZnTiO3 thin films,” J. Nanomater., 2012 (2012) 1-8. [29] Y. C. Lee and P. S. Chen, “Effect of Cu dopant on microstructure and phase transformation of ZnTiO3 thin films prepared by radio frequency magnetron sputtering,” Thin Solid Films, 520 (2012) 2672-2678. [30] C. Ye, Y. Wang, Y. Ye, J. Zhang, and G. H. Li, “Preparation and photoluminescence of undoped ZnTiO3 thin films,” J. Appl. Phys., 106 (2009) 033520. [31] Y. L. Chai, Y. S. Chang, G. J. Chen, and Y. J. Hsiao, “The effects of heat-treatment on the structure evolution and crystallinity of ZnTiO3 nano-crystals prepared by Pechini process,” Mater. Res. Bull., 43 (2008) 1066-1073. [32] C. F. Shih, W. M. Li, M. M. Lin, and K. T. Hung, “Zinc titanates sintered from ZnO and TiO2 nanowires prepared by a hydrothermal process,” J. Electrochem. Soc., 156 (2009) E13-E17. [33] C. F. Shih, W. M. Li, M. M. Lin, C. Y. Hsiao, and K. T. Hung, “Low-temperature sintered Zn2TiO4: TiO2 with near-zero temperature coefficient of resonant frequency at microwave frequency,” J. Alloy Compd., 485 (2009) 408-412. [34] H. T. Kim, Y. Kim, M. Valant and D. Suvorov, “Titanium incorporation in Zn2TiO4 spinel ceramics,” J. Am. Ceram. Soc., 84 (2001) 1081-1086. [35] Y. Matsumoto, “Energy positions of oxide semiconductors and photocatalysis with iron complex oxides,” J. Solid State Chem., 126 (1996) 227-234. [36] J. S. Jang, P. H. Borse, J. S. Lee, K. T. Lim, O. S. Jung, E. D. Jeong, J. S. Bae, M. S. Won, and H. G. Kim, “Energy band structure and photocatalytic property of Fe-doped Zn2TiO4 material,” Bull. Korean Chem. Soc., 30 (2009) 3021-3024. [37] X. J. Qin, L. Cui, and G. J. Shao, “Preparation of ZnO-Zn2TiO4 sol composite films and its photocatalytic activities,” J. Nanomater., 2012 (2013) 1-5. [38] N. T. Nolan, M. K. Seery, and S. C. Pillai, “Crystallization and phase-transition characteristics of sol-gel-synthesized zinc titanates,” Chem. Mater., 23 (2011) 1496-1504. [39] U. Steinike and B. Wallis, “Formation and structure of Ti-Zn-oxides,” Cryst. Res. Technol., 32 (1997) 187-193. [40] C. H. Ong and H. Gong, “Effects of aluminum on the properties of p-type Cu-Al-O transparent oxide semiconductor prepared by reactive co-sputtering,” Thin Solid Films, 445 (2003) 299-303. [41] K. M. Reddy, R. Benson, J. Hays, A. Thurber, M. H. Engelhard, V. Shutthanandan, R. Hanson, W. B. Knowlton, and A. Punnoose, “On the room-temperature ferromagnetism of Zn1-xCrxO thin films deposited by reactive co-sputtering,” Sol. Energ. Mat. Sol. C., 91 (2007) 1496-1502. [42] D. Singh, S. Singh, U. Kumar, R. S. Srinivasa, and S. S. Major, “Transparent conducting Ga-doped ZnO thin films grown by reactive co-sputtering of Zn and GaAs,” Thin Solid Films, 555 (2014) 126-130. [43] Y. C. Lee and W. H. Lee, “Effects of glass addition on microwave dielectric properties of Zn0.95Mg0.05TiO3 + 0.25TiO2 Ceramics,” Jpn. J. Appl. Phys., 44 (2005) 1838-1843. [44] J. Yang and J. H. Swisher, “The phase stability of Zn2Ti3O8,” Mater. Charact., 37 (1996) 153-159. [45] Y. C. Lee, C. S. Chiang, and Y. L. Huang, “Microwave dielectric properties and microstructures of Nb2O5-Zn0.95Mg0.05TiO3 + 0.25TiO2 ceramics with Bi2O3 addition,” J. Eur. Ceram. Soc., 30 (2010) 963-970. [46] X. C. Liu, M. Zhao, F. Gao, L. L. Zhao, and C. S. Tian, “Effects of WO3 additions on the phase structure and transition of zinc titanate ceramics,” J. Alloy Compd., 450 (2008) 440-445. [47] Y. L. Chai, Y. S. Chang, L. G. Teoh, Y. J. Lin, and Y. J. Hsiao, “ Influence of ZrO2 addition on the structure, thermal stability, and dielectric properties of ZnTiO3 ceramics,“ J. Mater. Sci., 43 (2008) 6771-6776. [48] B. Li, Z. X. Yue, L. T. Li, J. Zhou, Z. L. Gui, “ Low-fired microwave dielectrics in ZnO-TiO2 ceramics doped with CuO and B2O3,“ J. Mater. Sci.-Mater. El., 13 (2002) 415-418. [49] X. C. Liu, F. Gao, L. L. Zhao, and C. S. Tian, “ Low-temperature sintering and phase transition of zinc titanate ceramics with V2O5 and B2O3 addition,“ J. Alloy Compd., 436 (2007) 285-289. [50] S. Butee, A. R. Kulkarni, O. Prakash, R. P. R. C. Aiyar, K. Sudheendran, and K. C. R. James, “R.F. and microwave dielectric properties of (Zn0.95M0.05)2TiO4 (M = Mn2+, Co2+, Ni2+ or Cu2+) ceramics,“ Mater. Sci. Eng. B-Adv., 168 (2010) 151-155. [51] H. T. Kim and M. T. Lanagan, “Structure and microwave dielectric properties of (Zn1-xCox)TiO3 ceramics,“ J. Am. Ceram. Soc., 86 (2003) 1874-1878. [52] H. T. Kim, J. C. Hwang, J. H. Nam, B. H. Choi, and M. T. Lanagan, “Structure and microwave dielectric properties of (Zn1-xNix)TiO3 ceramics,“ J. Mater. Res., 18 (2003) 1067-1072. [53] J. Luo, X. R. Xing, R. B. Yu, Q. F. Xing, D. F. Zhang, and X. R. Chen, “Synthesis and characterization of (Zn, Co)TiO3 by modified low temperature preparing route,“ J. Alloy Compd., 402 (2005) 263-268. [54] K. P. Surendran, N. Santha, P. Mohanan, and M.T. Sebastian, “Temperature stable low loss ceramic dielectrics in (1-x)ZnAlO-xTiO system for microwave substrate applications,” Eur. Phys. J. B., 41 (2004) 301-306. [55] S. M. Rossnagel, “Sputtering and sputter deposition,” in: K. Seshan, “Handbook of Thin Film Deposition,” William Andrew, Norwich, (2002) 319-348. [56] S. M. Rossnagel, “Thin film deposition with physical vapor deposition and related technologies,” J. Vac. Sci. Technol. A, 21 (2003) S74. [57] S. M Rossnagel, “Sputter deposition for semiconductor manufacturing,” IBM J. Res. Dev., 43 (1999) 163-179. [58] D. Chapman, “Sputtering and Plasma Etching,” Wiley-Interscience, New York, (1980). [59] J. S. Jung, Y. H. Kim, S. K. Gil, and D. H. Kang, “Dielectric properties of zinc titanate thin films prepared by Rf magnetron sputtering,” J. Electroceram., 23 (2009) 272-276. [60] A. Golovchansky, H. T. Kim, and Y. Kim, “Zinc titanates dielectric ceramics prepared by sol-gel process,” J. Korean Phy. Soc., 32 (1998) S1167-S1169. [61] Y. C. Lee, W. H. Lee, and F. T. Shiao, “Microwave dielectric properties of Zn0.95Mg0.05TiO3 + 0.25TiO2 ceramics with 3ZnO-B2O3 addition,” Jap. J. Appl. Phys., 43 (2004) 7596-7599. [62] Y. R. Wang, S. F. Wang, and Y. M. Lin, “Low temperature sintering of (Zn1-xMgx)TiO3 microwave dielectrics,” Ceram. Int., 31 (2005) 905-909. [63] B. Li, S. Zhang, Y. Yuan, X. H. Zhou, and L. C. Xiang, “Dielectric properties and microstructure of TiO2 modified (ZnMg)TiO3 microwave ceramics with CaO-B2O3-SiO2,” J. Mater. Sci., 44 (2009) 4993-4998. [64] S. P. Wu, J. H. Luo, and S. X. Cao, “Microwave dielectric properties of B2O3-doped ZnTiO3 ceramics made with sol-gel technique,” J. Alloy Compd., 502 (2010) 147-152. [65] D. W. Chen and A. K. Ray, “Photodegradation kinetics of 4-nitrophenol in TiO2 suspension,” Water Res., 32 (1998) 3223-3234. [66] A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, and J. M. Herrmann, “Photocatalytic degradation pathway of methylene blue in water,” Appl. Catal. B-Environ., 31 (2001) 145-157. [67] S. K. Kim, S. Y. Jeong, and C. R. Cho, “Structural reconstruction of hexagonal to cubic ZnO films on Pt/Ti/SiO2/Si substrate by annealing,” Appl. Phys. Lett., 82 (2003) 562-564. [68] Z. Liu, D. Zhou, S. Gong, and H. Li, “Studies on a basic question of zinc titanates,” J. Alloy Compd., 475 (2009) 840-845. [69] H. P. Klug and L. E. Alexander, “X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials,” John Wiley & Sons, New York, (1974). [70] A. J. Moulson and J. M. Herbert, “Electroceramics: Materials, Properties, Application,” Chapman and Hall, London, (1990). [71] J. Cagnon, D. S. Boesch, N. H. Finstrom, S. Z. Nergiz, S. P. Keane, and S. Stemmer, “Microstructure and dielectric properties of pyrochlore Bi2Ti2O7 thin films,” J. Appl. Phys., 102 (2007) 044102. [72] C. Elissalde and J. Ravez, “Ferroelectric ceramics: Defects and dielectric relaxations,” J. Mater. Chem., 11 (2001) 1957-1967. [73] W. Q. Cao, J. W. Xiong, and J. P. Sun, “Dielectric behavior of Nb-doped Ba(ZrxTi1-x)O3,” Mater. Chem. Phys., 106 (2007) 338-342. [74] R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta. Cryst., A32 (1976) 751-767. [75] H. L. An and H. J. Ahn, “Fabrication of wrinkled Nb-doped TiO2 nanofibres via electrospinning,” Mater. Lett., 93 (2013) 88-91. [76] D. Y. Lee, J. T. Kim, J. H. Park, Y. H. Kim, I. K. Lee, M. H. Lee, and B. Y. Kim, “Effect of Er doping on optical band gap energy of TiO2 thin films prepared by spin coating,” Curr. Appl. Phys., 13 (2013) 1301-1305. [77] J. D. Bobic, M. M. V. Petrovic, J. Banys, and B. D. Stojanovic, “Electrical properties of niobium doped barium bismuth-titanate ceramics,” Mater. Res. Bull., 47 (2012) 1874-1880. [78] J. K. Kim, J. H. Kim, T. K. Song, and S. S. Kim, “Effects of niobium doping on microstructures and ferroelectric properties of bismuth titanate ferroelectric thin films,” Thin Solid Films, 419 (2002) 225-229. [79] J. Arbiol, J. Cerda, G. Dezanneau, A. Cirera, F. Peiro, A. Cornet, and J. R. Morante, “Effects of Nb doping on the TiO2 anatase-to-rutile phase transition,” J. Appl. Phys., 92 (2002) 853-861. [80] J. Y. Kim, H. S. Jung, J. H. No, J. R. Kim, and K. S. Hong, “Influence of anatase-rutile phase transformation on dielectric properties of sol-gel derived TiO2 thin films,” J. Electroceram., 16 (2006) 447-451. [81] V. V. Daniel, “Dielectric Relaxation,” Academic Press, London, NewYork, (1967). [82] R. Varatharajan, S. Madeswaran, and R. Jayavel, “Nb:BST: Crystal growth and ferroelectric properties,” J. Cryst. Growth, 225 (2001) 484-488. [83] Y. Yang, R. Scholz, H. J. Fan, D. Hesse, U. Gosele, and M. Zacharias, “Multitwinned spinel nanowires by assembly of nanobricks via oriented attachment: A case study of Zn2TiO4,” Acs Nano, 3 (2009) 555-562. [84] Y. Yang, X. W. Sun, B. K. Tay, J. X. Wang, Z. L. Dong, and H. M. Fan, “Twinned Zn2TiO4 Spinel nanowires using ZnO nanowires as a template,” Adv. Mater., 19 (2007) 1839-1844. [85] A. Asthana, K. Momeni, A. Prasad, Y. K. Yap, and R. S. Yassar, “On the correlation of crystal defects and band gap properties of ZnO nanobelts,” Appl. Phy. A-Mater., 105 (2011) 909-914. [86] H. Lin, S. Kumom, H. Kozuka, and Y. Yoko, “Electrical properties of gol-gel-derived transparent titania films doped with ruthenium and tantalum,” Thin solid films, 315 (1998) 266-272. [87] A. S. Barnard and P. Zapol “Effect of particle morphology and surface hydrogenation on the phase stability of TiO2,” Phys. Rev. B, 70 (2004) 235403. [88] J. Tauc, R. Grigorovici, and A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys. Status Solidi B, 15 (1966) 627-637. [89] H.R. Fallah, M. Ghasemi, A. Hassanzadeh, H. Steki, “The effect of annealing on structural, electric and optical properties of nanostructured ITO films prepared by e-beam evaporation,” Mater. Res. Bull., 42 (2007) 487-496. [90] S. A. Mayen-Hernandez, G. Torres-Delgado, R. Castanedo-Perez, M. G. Villarreal, A. Cruz-Orea, J. G. M. Alvarez, and O. Zelaya-Angel, “Optical and structural properties of ZnO + Zn2TiO4 thin films prepared by the sol-gel method,” J. Mater. Sci.: Mater. Electron., 18 (2007) 1127-1130. [91] Y. B. Li, Y. Bando, T. Sato, and K. Kurashima, “ZnO nanobelts grown on Si substrate,” Appl. Phys. Lett., 81 (2002) 144-146. [92] H. Y. Peng, M. D. McCluskey, Y. M. Gupta, M. A. Kneissl, and N. M. Johnson, “Shock-induced band-gap shift in GaN: Anisotropy of the deformation potentials,” Phys. Rev. B, 71 (2005) 115207. [93] K. Nishidate and M. Hasegawa, “Universal band gap modulation by radial deformation in semiconductor single-walled carbon nanotubes,” Phys. Rev. B, 78 (2008) 195403. [94] S. D. Mahanti, K. Hoang, and S. Ahmad, “Deep defect states in narrow band-gap semiconductors,” Physica. B, 401 (2007) 291-295. [95] E.G. Bylander, “Surface effects on the low‐energy cathodoluminescence of zinc oxide,” J. Appl. Phys., 49 (1978) 1188. [96] K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Voiget, “Correlation between photoluminescence and oxygen vacancies in ZnO phosphors,” Appl. Phys. Lett., 68 (1996) 403. [97] M. Liu, A. H. Kitai, and P. Mascher, “Point defects and luminescence centres in zinc oxide and zinc oxide doped with manganese,” J. Lumin., 54 (1992) 35-42. [98] M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, “Environmental applications of semiconductor photocatalysis,” Chem. Rev., 95 (1995) 69-96. [99] J. Lin, J. C. Yu, D. Lo, and S. K. Lam, “Photocatalytic activity of rutile Ti1-xSnxO2 solid solutions,” J. Catal., 183 (1999) 368-372. [100] Z. Zhang, C. C. Wang, R. Zakaria, and Y. Ying, “Role of particle size in nanocrystalline TiO2-based photocatalysts,” J. Phys. Chem. B, 102 (1998) 10871-10878. [101] A. Chowdhury, A. Kudo, T. Fujita, M. W. Chen, and T. Adschiri, “Nano-twinned structure and photocatalytic properties under visible light for undoped nano-titania synthesised by hydrothermal reaction in water-ethanol mixture,” J. Supercrit. Fluid., 58 (2011) 136-141. [102] S. H. Hyun and B. S. Kang, “Synthesis of titania composite membranes by the pressurized sol-gel technique,” J. Am. Ceram. Soc., 79 (1996) 279-282. [103] A. Kermanpur, E. Ghassemali, and S. Salemizadeh, “Synthesis and characterisation of microporous titania membranes by dip-coating of anodised alumina substrates using sol-gel method,” J. Alloys Compd., 461 (2008) 331-335. [104] A. Stoyanova, M. Sredkova, R. Iordanova, Y. Dimitriev, and A. Bachvarova-Nedelcheva, “Nonhydrolytic sol-gel synthesis and antibacterial properties of nanosized TiO2,” Optoelectron. Adv. Mater., 4 (2010) 2059-2063.
The aim of this study is to prepare, characterize, and apply the zinc titanate thin films by reactive magnetron co-sputtering in Ar/O2 atmosphere. The effects of Zn : Ti atomic ratio and annealing temperature were studied on the crystalline behavior, dielectric, optical properties, and photocatalytic activity of zinc titanates thin films. The content of the thesis is divided into four sections.
In the first section, the zinc titanate thin films were deposited on Si substrates to understand the influence of Ti content (28.26 to 75.56 %) and annealing temperature (600 to 900 °C) on the phase transformation and microstructure of the films. The as-deposited Zn-Ti-O film has an amorphous microstructure. The films contained mixtures of the ZnTiO3, Zn2TiO4, Zn2Ti3O8, rutile-TiO2, cubic-ZnO, and hexagonal-ZnO depending on annealing temperature and Zn : Ti atomic ratio. Moreover, either Zn2TiO4 or Zn2Ti3O8 were successfully prepared in a single phase when the Ti content of the films were 41 % or 62 % at annealing temperature of 600 °C, respectively. The complete microstructural analysis of ZnTiO3, Zn2TiO4, and Zn2Ti3O8 phases are revealed by transmission electron microscopy, in which the extra (110), (210), and (211) reflections of Zn2Ti3O8 in spinel can be identified.
In the second section, microstructure and dielectric properties of Zn2Ti3O8 thin films deposited on Pt/Cr/SiO2/Si substrate via a DC reactive magnetron co-sputtering method are investigated. A single Zn2Ti3O8 phase appeared when the films were annealed at 500 °C and 600 °C for 1h. Transmission electron microscopy examination indicated that the film annealed at 700 °C was composed of Zn2Ti3O8 and ZnTiO3 with fine and large grains in microstructure, respectively. The study firstly reveals that the Zn2Ti3O8 thin films has the following properties at 1 MHz: dielectric constant = 32.9, tanδ = 0.022 at 600 °C annealing.
In the third section, the effect of Nb-doping on phase transformation, structural characterization and dielectric properties of zinc titanate thin films prepared by RF/DC magnetron co-sputtering is investigated. The Nb-doping inhibits the formation of Zn2Ti3O8 phase at 600 °C and 700 °C and reduces the decomposition temperature of ZnTiO3 from 900 °C to 800 °C. Furthermore, it is easier for Nb5+ ions to substitute Ti4+ sites of TiO2 than that of ZnTiO3 and Zn2TiO4. This causes an increase in dielectric constant of the films because the NbO6 octahedra in lattice can enhance the space charge polarization. The 3.11 at. % Nb doped Zn-Ti-O films has dielectric constant = 83.9 and tanδ = 0.023 at 1 MHz at 800 °C annealing.
In the final section, microstructure and photocatalytic activity of Zn2TiO4 thin films deposited on quartz by using DC reactive magnetron co-sputtering are studied. The Zn2TiO4 thin film consisted of irregular shape grains with highly planar defect after annealing at 900 °C. The planar defect such as stacking faults and annealed twins are completely revealed by transmission electron microscopy. Under UV light irradiation, the as-deposited thin films exhibit better photocatalytic activity than crystalline films.

本研究採用反應磁控共濺鍍法沉積鈦酸鋅與鈦酸鋅摻雜鈮的薄膜於矽晶片、白金電極基板及石英玻璃,探討薄膜的鋅/鈦原子比例及退火處理的溫度對於其相變化、介電與光學特性及光觸媒效應的影響。以先進的材料分析設備對鈦酸鋅薄膜進行成分、結晶結構、表面形貌及粗糙度、微結構、介電與光學特性、光催化反應情況的研究,例如:化學分析電子儀(XPS)、低掠角X-光繞射分析儀(GIXRD)、場發射掃描式電子顯微鏡(FESEM)、原子力顯微鏡(AFM)、場發射穿透式電子顯微鏡(FETEM)、分光光譜儀(UV-VIS spectrophotometry)、電容量測儀(LCR meter)。此研究共分為四個主題進行探討:
第一個主題為探討薄膜的鋅/鈦原子比例(鈦含量從28.26 %到75.56 %)及退火溫度(600 °C到900 °C)對其相變化與微結構的影響,當薄膜的鈦含量比鋅多的時候,ZnTiO3與Zn2Ti3O8結晶相較容易形成;而當鋅較多的時候,Zn2TiO4較容易形成。其中,在薄膜鈦含量分別為62%及41%時,成功地製備單一Zn2Ti3O8及Zn2TiO4結晶相薄膜。利用FETEM分析薄膜晶粒尺寸與結晶相的關係,並且辨示出尖晶石Zn2TiO4結構及尖晶石陽離子缺陷型Zn2Ti3O8結構。
第二個主題為探討退火溫度對於Zn2Ti3O8薄膜的微結構與介電特性的影響,利用濺鍍法沉積薄膜於白金電極(Pt/Cr/SiO2/Si)基板上並退火500 °C時,成功地製備出單一Zn2Ti3O8結晶相薄膜之電容器結構。當退火700 °C時,較大尺寸的晶粒從薄膜中析出,利用FETEM鑑定其為ZnTiO3結晶相,並搭配FETEM橫截面高解析影像分析技術,證明Zn2Ti3O8薄膜與白金電極接觸性良好。特別的是,Zn2Ti3O8薄膜的介電特性第一次被發表:介電常數為32.9,介電損失為0.022在1 MHz的量測頻率下。
第三個主題為探討鈮摻雜在鈦酸鋅薄膜中對其相變化及介電特性的影響,此薄膜利用RF/DC磁控共濺鍍法沉積在白金電極(Pt/Cr/SiO2/Si)基板上。當鈮摻雜在鈦酸鋅薄膜中,於退火600 °C及700 °C時,鈮的存在會抑制Zn2Ti3O8結晶相的產生,並且降低ZnTiO3的分解溫度從900 °C降低至800 °C,此外,鈮的摻雜亦會提升薄膜的介電特性。在鈮含量為3.11 at. %及退火800 °C時,鈦酸鋅薄膜(ZnTiO3 + TiO2)的介電特性為最佳:介電常數為83.9,介電損失為0.023在1 MHz的量測頻率下。
第四個主題為探討退火溫度對Zn2TiO4薄膜的微結構與光觸媒效應的影響,當Zn2TiO4鍍在石英基材上時,為非晶質結構與二氧化鈦奈米晶共存。進行600 °C到900 °C的退火製程之後,形成Zn2TiO4結晶相。從FESEM觀察Zn2TiO4薄膜退火900 °C的表面形貌發現,具有高密度的面缺陷晶粒。進一步利用FETEM觀察面缺陷型態為疊差與退火雙晶。此薄膜經過分解亞甲基藍水溶液的實驗評估之後,發現初鍍之薄膜具有較佳的光觸媒活性。
其他識別: U0005-0407201400361800
Rights: 同意授權瀏覽/列印電子全文服務,2017-07-10起公開。
Appears in Collections:材料科學與工程學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-103-8098066013-1.pdf27.09 MBAdobe PDFThis file is only available in the university internal network   
Show full item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.