Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/92012
標題: 富含SiO2與脫硫渣改質物之CaCO3/Ca3(SiO4)O漿料噴覆於鎂合金表面以提升其抗腐蝕能力與耐熱性質之研究
Spray coating of CaCO3/Ca3(SiO4)O slurry containing SiO2/modified desulfurization slag on AZ91D Mg alloy for improving the corrosion performance and the heat resistance of the alloy
作者: 王駿宏
Jun-Hong Wang
關鍵字: AZ91D鎂合金;脫硫渣;抗腐蝕;耐熱;空氣噴塗;AZ91D magnesium alloy;desulfurization slag;anti-corrosion;heat resistance;air spray
引用: [1] 'Reducing transport greenhouse gas emissions – trends and data,' International Transport Forum, www.internationaltransportforum.org, 2010 (accessed 02.10.13). [2] D. Font Vivanco, J. Freire-González, R. Kemp, and E. van der Voet, 'The Remarkable Environmental Rebound Effect of Electric Cars: A Microeconomic Approach,' Environmental Science & Technology, vol. 48, pp. 12063-12072, 2014. [3] A. Emadi, L. Young Joo, and K. Rajashekara, 'Power Electronics and Motor Drives in Electric, Hybrid Electric, and Plug-In Hybrid Electric Vehicles,' Industrial Electronics, IEEE Transactions on, vol. 55, pp. 2237-2245, 2008. [4] C. Samaras and K. Meisterling, 'Life Cycle Assessment of Greenhouse Gas Emissions from Plug-in Hybrid Vehicles: Implications for Policy,' Environmental Science & Technology, vol. 42, pp. 3170-3176, 2008. [5] H. C. Kim and T. J. Wallington, 'Life-Cycle Energy and Greenhouse Gas Emission Benefits of Lightweighting in Automobiles: Review and Harmonization,' Environmental Science & Technology, vol. 47, pp. 6089-6097, 2013. [6] A. M. Lewis, J. C. Kelly, and G. A. Keoleian, 'Evaluating the life cycle greenhouse gas emissions from a lightweight plug-in hybrid electric vehicle in a regional context,' in Sustainable Systems and Technology (ISSST), 2012 IEEE International Symposium on, 2012, pp. 1-6. [7] Å. Kastensson, 'Developing lightweight concepts in the automotive industry: taking on the environmental challenge with the SåNätt project,' Journal of Cleaner Production, vol. 66, pp. 337-346, 2014. [8] G. Belingardi and J. Obradović, 'Recent development in car body lightweight design: A contribution toward greener environment,' Mobility & Vehicle Mechanics, vol. 38, 2012. [9] H. Wallentowitz, 'Structural design of vehicles,' Instutut fur Kraftfahrzeuge, Aachen, Germany, 2004. [10] A. Plath and O. Taeger, 'From Small Scale to volume Production – How to make Carbon Fiber Mainstream,' presented at the International Conference SEICO 13 Paris, SAMPE Europe 34th, 2013. [11] E. Mangino, J. Carruthers, and G. Pitarresi, 'The future use of structural composite materials in the automotive industry,' International Journal of Vehicle Design, vol. 44, pp. 211-232, 2007. [12] I. Shigematsu, M. Nakamura, N. Saitou, and K. Shimojima, 'Surface treatment of AZ91D magnesium alloy by aluminum diffusion coating,' Journal of Materials Science Letters, vol. 19, pp. 473-475, 2000. [13] J. E. Gray and B. Luan, 'Protective coatings on magnesium and its alloys — a critical review,' Journal of Alloys and Compounds, vol. 336, pp. 88-113, 2002. [14] S. Lee, S. Lee, and D. Kim, 'Effect of Y, Sr, and Nd additions on the microstructure and microfracture mechanism of squeeze-cast AZ91-X magnesium alloys,' Metallurgical and Materials Transactions A, vol. 29, pp. 1221-1235, 1998. [15] B. L. Mordike and T. Ebert, 'Magnesium: Properties — applications — potential,' Materials Science and Engineering: A, vol. 302, pp. 37-45, 2001. [16] Y. Uematsu, K. Tokaji, M. Kamakura, K. Uchida, H. Shibata, and N. Bekku, 'Effect of extrusion conditions on grain refinement and fatigue behaviour in magnesium alloys,' Materials Science and Engineering: A, vol. 434, pp. 131-140, 2006. [17] W. A. Monteiro, S. J. Buso, and L. V. da Silva, 'Application of Magnesium Alloys in Transport,' New Features on Magnesium Alloys, 2012. [18] D. S. Kumar, C. T. Sasanka, K. Ravindra, and K. Suman, 'Magnesium and Its Alloys in Automotive Applications–A Review,' American Journal of Materials Science and Technology, vol. 4, pp. 12-30, 2015. [19] A. A. Luo, 'Magnesium casting technology for structural applications,' Journal of Magnesium and Alloys, vol. 1, pp. 2-22, 2013. [20] 'Magnesium Metal: Global Industry Markets & Outlook 2012,' in Roskill Information Services Ltd., www.roskill.com, ed, 2012. [21] R. L. Edgar, 'Global Overview on Demand and Applications for Magnesium Alloys,' in Magnesium Alloys and their Applications, ed: Wiley-VCH Verlag GmbH & Co. KGaA, 2006, pp. 1-8. [22] F. H. Froes, D. Eliezer, and E. Aghion, 'The science, technology, and applications of magnesium,' JOM, vol. 50, pp. 30-34, 1998. [23] C. Blawert, N. Hort, and K. Kainer, 'Automotive applications of magnesium and its alloys,' Trans. Indian Inst. Met, vol. 57, pp. 397-408, 2004. [24] H. Friedrich and S. Schumann, 'Research for a “new age of magnesium” in the automotive industry,' Journal of Materials Processing Technology, vol. 117, pp. 276-281, 2001. [25] H. Dieringa and K. U. Kainer, 'Magnesium – der Zukunftswerkstoff für die Automobilindustrie?,' Materialwissenschaft und Werkstofftechnik, vol. 38, pp. 91-96, 2007. [26] R. C. Zeng, F. Zhang, Z. D. Lan, H. Z. Cui, and E. H. Han, 'Corrosion resistance of calcium-modified zinc phosphate conversion coatings on magnesium–aluminium alloys,' Corrosion Science, vol. 88, pp. 452-459, 2014. [27] H. Yang, X. Guo, X. Chen, and N. Birbilis, 'A homogenisation pre-treatment for adherent and corrosion-resistant Ni electroplated coatings on Mg-alloy AZ91D,' Corrosion Science, vol. 79, pp. 41-49, 2014. [28] Z. C. Wang, F. Jia, L. Yu, Z. B. Qi, Y. Tang, and G. L. Song, 'Direct electroless nickel–boron plating on AZ91D magnesium alloy,' Surface and Coatings Technology, vol. 206, pp. 3676-3685, 2012. [29] G. L. Song and Z. Shi, 'Corrosion mechanism and evaluation of anodized magnesium alloys,' Corrosion Science, vol. 85, pp. 126-140, 2014. [30] H. Hoche, S. Groß, and M. Oechsner, 'Development of new PVD coatings for magnesium alloys with improved corrosion properties,' Surface and Coatings Technology, vol. 259, Part A, pp. 102-108, 2014. [31] J. H. Syu, J. Y. Uan, M. C. Lin, and Z. Y. Lin, 'Optically transparent Li–Al–CO3 layered double hydroxide thin films on an AZ31 Mg alloy formed by electrochemical deposition and their corrosion resistance in a dilute chloride environment,' Corrosion Science, vol. 68, pp. 238-248, 2013. [32] J. Y. Uan, B. L. Yu, and X. L. Pan, 'Morphological and Microstructural Characterization of the Aragonitic CaCO3/Mg,Al-Hydrotalcite Coating on Mg-9 Wt Pct Al-1 Wt Pct Zn Alloy to Protect against Corrosion,' Metallurgical and Materials Transactions A, vol. 39, pp. 3233-3245, 2008. [33] B. L. Yu, X. L. Pan, and J. Y. Uan, 'Enhancement of corrosion resistance of Mg-9 wt.% Al-1 wt.% Zn alloy by a calcite (CaCO3) conversion hard coating,' Corrosion Science, vol. 52, pp. 1874-1878, 2010. [34] H. Duan, K. Du, C. Yan, and F. Wang, 'Electrochemical corrosion behavior of composite coatings of sealed MAO film on magnesium alloy AZ91D,' Electrochimica Acta, vol. 51, pp. 2898-2908, 2006. [35] B. Mazumder, A. Vella, B. Deconihout, and T. a. Al-Kassab, 'Evaporation mechanisms of MgO in laser assisted atom probe tomography,' Ultramicroscopy, vol. 111, pp. 571-575, 2011. [36] A. Hofmeister, 'Thermal diffusivity and thermal conductivity of single-crystal MgO and Al2O3 and related compounds as a function of temperature,' Physics and Chemistry of Minerals, vol. 41, pp. 361-371, 2014. [37] G. Leahu, R. Li Voti, C. Sibilia, M. Bertolotti, V. Golubev, and D. A. Kurdyukov, 'Study of thermal and optical properties of SiO2/GaN opals by photothermal deflection technique,' Optical and Quantum Electronics, vol. 39, pp. 305-310, 2007. [38] 張鈞然, 'CaCO3/Ca3(SiO4)O為主的粉末混參SiO2/脫硫渣改質物應用於鎂合金抗蝕阻熱之研究,' 碩士, 材料科學與工程學系所, 中興大學, 台中市, 2014. [39] 林柏諭, 'Mg-Fe-LDH與SiO2添加於含CaCO3/Ca3(SiO4)O之隔熱防蝕塗層並將其噴塗於鎂合金AZ91D表面上之特性研究,' 碩士, 材料科學與工程學系所, 中興大學, 台中市, 2014. [40] Y. Wang, D. Wei, J. Yu, and S. Di, 'Effects of Al2O3 Nano-additive on Performance of Micro-arc Oxidation Coatings Formed on AZ91D Mg Alloy,' Journal of Materials Science & Technology, vol. 30, pp. 984-990, 2014. [41] X. J. Cui, C. H. Liu, R. S. Yang, M. T. Li, and X. Z. Lin, 'Self-sealing micro-arc oxidation coating on AZ91D Mg alloy and its formation mechanism,' Surface and Coatings Technology, vol. 269, pp. 228-237, 2015. [42] A. T. Kuhn, 'Plasma anodized aluminum—A 2000/2000 ceramic coating,' Metal Finishing, vol. 100 (issues 11-12), pp. 44-50, 2002. [43] Y. M. Kim, C. D. Yim, H. S. Kim, and B. S. You, 'Key factor influencing the ignition resistance of magnesium alloys at elevated temperatures,' Scripta Materialia, vol. 65, pp. 958-961, 2011. [44] Y. Kawamura, 'High strength magnesium alloys strengthened by a novel LPSO structure phase,' presented at the Asian Light Metals Association Forum 2014, Japan Institute of Light Metals, Koyamadai-Kaikan, Tokyo, Japna,, 2014. [45] B. Powell, 'The USAMP magnesium powertrain cast components project,' JOM, vol. 55, pp. 28-29, 2003. [46] H. Watarai, 'Trend of research and development for magnesium alloys,' Science & Technology Trends, vol. 18, pp. 84-97, 2006. [47] W. Qudong, C. Wenzhou, Z. Xiaoqin, L. Yizhen, D. Wenjiang, Z. Yanping, et al., 'Effects of Ca addition on the microstructure and mechanical properties of AZ91magnesium alloy,' Journal of Materials Science, vol. 36, pp. 3035-3040, 2001. [48] I. J. Polmear, 'Recent Developments in Light Alloys,' Materials Transactions, JIM, vol. 37, pp. 12-31, 1996. [49] I. A. Anyanwu, Y. Gokan, S. Nozawa, A. Suzuki, S. Kamado, Y. Kojima, et al., 'Development of New Die-castable Mg-Zn-Al-Ca-RE Alloys for High Temperature Applications,' Materials Transactions, vol. 44, pp. 562-570, 2003. [50] S. Kamado, N. Ikeya, R. S. Rudi, T. Araki, and Y. Kojima, 'Semi-solid Forming of New Mg-Zn-Al-Ca Alloys,' in Magnesium Alloys and their Applications, ed: Wiley-VCH Verlag GmbH & Co. KGaA, 2006, pp. 651-656. [51] I. A. Anyanwu, T. Honda, S. Kamado, Y. Kojima, S. Takeda, and T. Ishida, 'Heat and Corrosion Resistance of Mg-Zn-Al-Ca Alloys,' in Magnesium Alloys and their Applications, ed: Wiley-VCH Verlag GmbH & Co. KGaA, 2006, pp. 110-115. [52] F. Micari, G. Buffa, S. Pellegrino, and L. Fratini, 'Friction Stir Welding as an Effective Alternative Technique for Light Structural Alloys Mixed Joints,' Procedia Engineering, vol. 81, pp. 74-83, 2014. [53] Y. J. Chuang, Y. H. Chuang, and C. Y. Lin, 'Fire tests to study heat insulation scenario of galvanized rolling shutters sprayed with intumescent coatings,' Materials & Design, vol. 30, pp. 2576-2583, 2009. [54] M. C. Yew and N. H. Ramli Sulong, 'Fire-resistive performance of intumescent flame-retardant coatings for steel,' Materials & Design, vol. 34, pp. 719-724, 2012. [55] Z. Wang, E. Han, and W. Ke, 'Influence of expandable graphite on fire resistance and water resistance of flame-retardant coatings,' Corrosion Science, vol. 49, pp. 2237-2253, 2007. [56] '建築技術規則,' 內政部,營建署建築研究所, Ed., ed, 1998. [57] A. Hermansson, T. Hjertberg, and B.-Å. Sultan, 'The flame retardant mechanism of polyolefins modified with chalk and silicone elastomer,' Fire and Materials, vol. 27, pp. 51-70, 2003. [58] J. J. Thomas, H. M. Jennings, and J. J. Chen, 'Influence of Nucleation Seeding on the Hydration Mechanisms of Tricalcium Silicate and Cement,' The Journal of Physical Chemistry C, vol. 113, pp. 4327-4334, 2009. [59] M. Barsoum and W. Barsoum, Fundamentals of Ceramics: Taylor & Francis, 2002. [60] H. Huang, M. Tian, L. Liu, Z. He, Z. Chen, and L. Zhang, 'Effects of silicon additive as synergists of Mg(OH)2 on the flammability of ethylene vinyl acetate copolymer,' Journal of Applied Polymer Science, vol. 99, pp. 3203-3209, 2006. [61] A. Kumar S, H. Bhandari, C. Sharma, F. Khatoon, and S. K. Dhawan, 'A new smart coating of polyaniline–SiO2 composite for protection of mild steel against corrosion in strong acidic medium,' Polymer International, vol. 62, pp. 1192-1201, 2013. [62] Y. Kashiwaya, Y. Kusada, and R. O. Suzuki, 'Effect of Sulfur on the TTT Diagram of CaO-Al2O3 Slag at Eutectic Composition,' ISIJ International, vol. 51, pp. 1974-1981, 2011. [63] L. Dong, H. Zhang, T. Fujita, S. Ohnishi, H. Li, M. Fujii, et al., 'Environmental and economic gains of industrial symbiosis for Chinese iron/steel industry: Kawasaki''s experience and practice in Liuzhou and Jinan,' Journal of Cleaner Production, vol. 59, pp. 226-238, 2013. [64] H. Yi, G. Xu, H. Cheng, J. Wang, Y. Wan, and H. Chen, 'An Overview of Utilization of Steel Slag,' Procedia Environmental Sciences, vol. 16, pp. 791-801, 2012. [65] G. Wranglén, 'Review article on the influence of sulphide inclusions on the corrodibility of Fe and steel,' Corrosion Science, vol. 9, pp. 585-602, 1969. [66] D. A. Melford, 'The Influence of Residual and Trace Elements on Hot Shortness and High Temperature Embrittlement,' Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 295, pp. 89-103, 1980. [67] Y. L. Chen, J. E. Chang, P. H. Shih, M. S. Ko, Y. K. Chang, and L. C. Chiang, 'Reusing pretreated desulfurization slag to improve clinkerization and clinker grindability for energy conservation in cement manufacture,' Journal of Environmental Management, vol. 91, pp. 1892-1897, 2010. [68] M. I. Domínguez, F. Romero-Sarria, M. A. Centeno, and J. A. Odriozola, 'Physicochemical characterization and use of wastes from stainless steel mill,' Environmental Progress & Sustainable Energy, vol. 29, pp. 471-480, 2010. [69] C. R. Loper Jr, J. O. Kristiansen, A. L. Haase, R. H. Bigge, and F. Quilling, 'Beneficial reuse of desulfurization slag,' Transactions of the American Foundrymen''s Society, vol. 104, pp. 29-32, 1996. [70] A. Bonazza, L. Cunico, G. Dircetti, M. Dondi, G. Guarini, and A. Ruffini, 'Recycling steel slag in the brick industry,' Ind. Laterizi, vol. 12, pp. 170-182, 2001. [71] B. Chen and J. Liu, 'Effect of fibers on expansion of concrete with a large amount of high f-CaO fly ash,' Cement and Concrete Research, vol. 33, pp. 1549-1552, 2003. [72] M. Nicolae, I. Vîlciu, and F. Zǎman, 'X-ray diffraction analysis of steel slag and blast furnace slag viewing their use for road construction,' UPB Sci. Bull, vol. 69, pp. 99-108, 2007. [73] M. Svanera, S. Panza, F. Uberto, and R. Roberti, 'An innovative system for the re-use of slag from the Electric Arc Furnace,' Metallurgia Italiana, pp. 37-43, 2012. [74] T. Yan, L. Tan, D. Xiong, X. Liu, B. Zhang, and K. Yang, 'Fluoride treatment and in vitro corrosion behavior of an AZ31B magnesium alloy,' Materials Science and Engineering: C, vol. 30, pp. 740-748, 2010. [75] K. Y. Chiu, M. H. Wong, F. T. Cheng, and H. C. Man, 'Characterization and corrosion studies of fluoride conversion coating on degradable Mg implants,' Surface and Coatings Technology, vol. 202, pp. 590-598, 2007. [76] F. Witte, J. Fischer, J. Nellesen, C. Vogt, J. Vogt, T. Donath, et al., 'In vivo corrosion and corrosion protection of magnesium alloy LAE442,' Acta Biomaterialia, vol. 6, pp. 1792-1799, 2010. [77] H. L. Guo, J. L. Xie, and K. Dan, 'Experimental Investigation of Mixing Desulfurization Residues and Cement,' Advanced Materials Research, vol. 113, pp. 1976-1980, 2010. [78] Y. Long, L. Yue, G. Li, Y. Lei, and S. Wang, 'The Basic Study on the Prepartion of Steel Slag Cement with Gas Quenching Steel Slag,' The Open Materials Science Journal, vol. 5, pp. 72-77, 2011. [79] 'Standard Practice for Operating Salt Spray (Fog) Apparatus,' ASTM B117, 1994. [80] 'Standard Test Methods for Measuring Adhesion by Tape Test,' ASTM D3359, 2005. [81] S. Sanghi, S. Sindhu, A. Agarwal, and V. P. Seth, 'Physical, optical and electrical properties of calcium bismuth borate glasses,' Radiation Effects and Defects in Solids, vol. 159, pp. 369-379, 2004. [82] M. Liu, D. S. Shih, C. Parish, and A. Atrens, 'The ignition temperature of Mg alloys WE43, AZ31 and AZ91,' Corrosion Science, vol. 54, pp. 139-142, 2012. [83] T. Sato and J. Beaudoin, 'Effect of nano-CaCO3 on hydration of cement containing,' Advances in Cement Research, vol. 23, pp. 1-29, 2010. [84] J. J. Beaudoin, V. S. Beaudoin, R. F. Ramachandran, and Feldman, 'Interaction of chloride and C-S-H,' Cement and concrete research, vol. 20, pp. 875-883, 1990. [85] V. S. Ramachandran, 'Possible states of chloride in the hydration of tricalcium silicate in the presence of calcium chloride,' Matériaux et Construction, vol. 4, pp. 3-12, 1971. [86] P. Liu, 'Reaction of water with vacuum-cleaved CaO (100) surfaces: An X-ray photoemission spectroscopy study,' Surface science, vol. 416, p. 326, 1998. [87] C. S. DOYLE, T. KENDELEWICZ, X. CARRIER, and G. E. BROWN, 'THE INTERACTION OF CARBON DIOXIDE WITH SINGLE CRYSTAL CaO(100) SURFACES,' Surface Review and Letters, vol. 06, pp. 1247-1254, 1999. [88] M. I. Sosulnikov and Y. A. Teterin, 'X-ray photoelectron studies of Ca, Sr and Ba and their oxides and carbonates,' Journal of Electron Spectroscopy and Related Phenomena, vol. 59, pp. 111-126, 1992. [89] V. Dimitrov and T. Komatsu, 'Classification of Simple Oxides: A Polarizability Approach,' Journal of Solid State Chemistry, vol. 163, pp. 100-112, 2002. [90] S. Biniak, G. Szymański, J. Siedlewski, and A. Świ tkowski, 'The characterization of activated carbons with oxygen and nitrogen surface groups,' Carbon, vol. 35, pp. 1799-1810, 1997. [91] S. Teir, S. Eloneva, and R. Zevenhoven, 'Production of precipitated calcium carbonate from calcium silicates and carbon dioxide,' Energy Conversion and Management, vol. 46, pp. 2954-2979, 2005. [92] M. Chen, S. Ito, and A. Yamaguchi, 'Carbonation of CaO Clinkers and Improvement of Their Hydration Resistance,' Journal of the Ceramic Society of Japan, vol. 110, pp. 512-517, 2002. [93] M. Chen, N. Wang, J. Yu, and A. Yamaguchi, 'Effect of porosity on carbonation and hydration resistance of CaO materials,' Journal of the European Ceramic Society, vol. 27, pp. 1953-1959, 2007. [94] A. Badanoiu, M. Georgescu, and A. Puri, 'The study of ''DSP'' binding systems by thermogravimetry and differential thermal analysis,' Journal of Thermal Analysis and Calorimetry, vol. 74, pp. 65-75, 2003. [95] R. Gabrovšek, 'Evaluation of the hydration of Portland cement containing various carbonates by means of thermal analysis,' Acta chimica slovenica, vol. 53, p. 159, 2006. [96] A. Hidalgo, S. Petit, C. Domingo, C. Alonso, and C. Andrade, 'Microstructural characterization of leaching effects in cement pastes due to neutralisation of their alkaline nature: Part I: Portland cement pastes,' Cement and Concrete Research, vol. 37, pp. 63-70, 2007.
摘要: 
In this study, CaCO3/Ca3(SiO4)O slurry containing different weight ratio of SiO2 and modified desulfurization slag, sprayed coating on AZ91D for improving the corrosion performance and the heat resistance of the alloy. The result of experiment show the corrosion performance of the spray-coated AZ91D is improved with increasing SiO2 content added into cement slurry. When the spray coating containing >12 wt.% SiO2, the corrosion performance of the spray-coated AZ91D is not enhanced and C-S-H (CaO-SiO2-H2O) gel is hindered self-repair. In addition, when 30 wt.% modified desulfurization slag added into containing 12 wt.%SiO2 cement slurry spray coating on AZ91D (C+12S+30M@AZ91D), the corrosion current density of the spray-coated AZ91D was decreased from 198 μAcm-2 (AZ91D) to 14.61 μAcm-2. The anti-salt spray time of C+12S+30M@AZ91D is improved to 144 hour. The corrosion resistance ability has elevated the phenomenon. After 48 hour of salt spray test, the C+12S+30M@AZ91D surface can be found the forming of CaO-CaCO3 dense layer. In heat resistance properties, the C+12S+30M@AZ91D surface on the coatedside was heated to 500 ℃, the tensile strength of C+12S+30M@AZ91D can be maintained at 204 MPa. The ignition temperature of C+12S+30M@AZ91D is increased from 580 ℃ (AZ91D) to 650 ℃. The time to onset burning at 735 ℃ of C+12S+30M@AZ91D can be increased from 45 second (AZ91D) to 89 second. The spray-coated AZ91D, the coating materials containing the 12 wt.% SiO2 cement slurry added with 30 wt.% modified desulfurization slag, can improve the corrosion performance and the heat resistance of AZ91D. After spray-coated on AZ91D, the density rising of the spray-coated AZ91D was maintained at <5 %.

本研究將富含不同重量比例SiO2與脫硫渣改質物之CaCO3/Ca3(SiO4)O之漿料噴覆於鎂合金AZ91D表面,以提升其抗腐蝕能力與耐熱性質。實驗結果顯示,隨著噴覆層中添加SiO2的比例增加,其抗腐蝕能力有提升的趨勢。其中,當噴覆層中添加>12 wt.%SiO2時,抗腐蝕能力方面並無再隨著SiO2添加比例增加有再提升的現象,並同時有阻礙C-S-H膠體(Ca3(SiO4)O水合反應)進行自我修復。另外,在含有12 wt.%SiO2水泥漿料中添加30 wt.%脫硫渣改質物,其噴覆於AZ91D表面之試片的腐蝕電流密度可從198 μAcm-2 (AZ91D)降至14.61 μAcm-2。其試片抵抗鹽霧試驗時間相較於其他參數試片可提升至144小時,抗腐蝕能力方面隨著脫硫渣改質物添加有再提升的現象。此外,可發現其經過48小時鹽霧試驗,試片表面會形成一層CaO-CaCO3緻密層可阻礙氯離子進行腐蝕。耐熱性質方面,其試片噴覆層表面加熱至500 ℃之破斷應力可從91 MPa (AZ91D)提升至204 MPa,有助於鎂合金於高溫環境下仍能維持強度。燃點溫度方面,其試片可從580 ℃ (AZ91D)增加至650 ℃。在735 ℃環境下耐燃時間可從45秒(AZ91D)增加至89秒,大幅提升AZ91D的耐熱性質。AZ91D表面噴覆含有30 wt.%脫硫渣改質物之防蝕隔熱噴覆層,有助於提升AZ91D鎂合金的抗腐蝕能力與耐熱性質。此外,AZ91D表面噴覆防蝕隔熱噴覆層之試片密度增加幅度仍在5 %以內,使AZ91D仍保有輕量化之優勢。
URI: http://hdl.handle.net/11455/92012
其他識別: U0005-0408201515120000
Rights: 同意授權瀏覽/列印電子全文服務,2018-08-05起公開。
Appears in Collections:材料科學與工程學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-104-7102066010-1.pdf4.97 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.